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Abstract

The paper presents a robust version of a simple two-assets Mer-

ton's (1969) model where the optimal choices and the implied shadow

market prices of risk for a representative robust decision maker (RDM)

can be easily described.

With the exeption of the log utility case, precautionary behaviour

is induced in the optimal consumption-investment rules through a sub-

stitution of investment in risky assets with both current consumption

and riskless saving. For the log utility case, precautionary behaviour

arises only through a substitution between risky and riskless assets.

On the �nancial side, the decomposition of the market price of risk

in a standard consumption based component and a further price for

model uncertainty risk (which is positively related to the robustness

parameter) is independent of the underlying risk aversion parameter.
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1 Introduction

This paper presents a robust version of a simple two-assets Merton's

(1969) model where the optimal consumption and portfolio choices as well as

the implied market price of risk of a representative "robust decision maker"

(RDM) (cf. Hansen, Sargent and Tallarini (1998) and Anderson, Hansen and

Sargent (1999); AHS (1999) in the sequel) can be easily described.

Robustness leads generally to focusing on worst case scenarios over a re-

stricted set of appropriately de�ned relevant model misspeci�cations. In the

present formulation of robustness we model asset prices that inherently re-


ect a form of risk aversion to a particular kind of Knightian uncertainty

(cf. Knight (1921) and Epstein and Wang (1994)). Unlike other formula-

tions - as for instance those directly linked to the literature of risk sensitive

control (cf. Whittle (1990)) - this formulation yields explicit and very easy

and interpretable expressions for the relevant variables in the robust Mer-

ton's problem. In fact, the solution for the robust problem is of the same

functional form as that for the classical Merton's problem.

Similarly to AHS (1999), we model robustness through a RDM determin-

ing worst case consumption and portfolio rules over a class of alternative

models that are constrained in their "distance" from a reference model for

asset prices. The reference model is the standard geometric Brownian mo-

tion process while the maximal admissible "distance" therefrom is measured

with a continuous time version of relative entropy. This single "distance" pa-

rameter models a preference for robustness by constraining the set of model

misspeci�cations relevant to a RDM.

The contribution of the paper consists in deriving explicit and easily under-

standable robust consumption and investment rules that can be compared to

those of a non-robust decision maker in Merton's model. AHS (1999) develop

a theoretical framework to robust decision making in continuous time that

provide general characterizations of the impact of a preference for robustness

on the optimal decision rules and on pricing. However, when analyzing a

speci�c model one still has to solve the arising Bellman equations in order to

fully characterize the implied optimal robust decision rules; in the Merton's

model this can be done explicitly and easily.

With the exeption of the log utility case robustness a�ects the optimal de-

cision rules through a substitution of investment in risky assets with both

current consumption and riskless saving. For the log utility case, precau-

tionary behaviour comes up only through a substitution between risky and

riskless assets.

On the �nancial side, the decompositions of the market price of risk in a

standard consumption based component and a further price for model un-
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certainty risk (which is positively related to the robustness parameter) is

independent of the underlying risk aversion parameter.

In Section 2 we present a general robust version of Merton's (1969) two assets

model. Section 3 derives the implied optimal consumption and portfolio rules

for isoelastic utility functions. Section 4 makes the structure of the implied

market price of risk explicit while Section 5 concludes.

2 A Robust Merton's two Assets Model

There are two assets, a risk free asset with price Bt at time t and a risky

asset with price Pt at time t whose dynamics are given by

dBt = rBtdt (1)

dPt = �Ptdt+ �PtdZt : (2)

The drift and volatility � and � as well as the short rate r are assumed

constant. Z is a standard Brownian motion in IR.

Let wt be the proportion of current wealth Wt invested in the risky asset.

The budget constraint for current wealth Wt is given by

dWt = wt(�� r)Wtdt+ (rWt � ct)dt+ wtWt�dZt ; (3)

where ct is the consumption rate at time t.

Associated to the joint Markov process de�ned by (2) and (3) is a semigroup

(Tt)t�0 of operators de�ned by

Tt'(y) = E['(Wt; Pt)j(W0; P0) = y] ; (4)

and a generator A de�ned by

A(') = lim
t!0

Tt'� '

t
; (5)

for all test functions ' such that this limit exists. In the case of the classical

Merton's (1969) and (1971) model the generator (AM) is given by1

AM(') = �
@'

@P
+ (w(�� r) + (rW � c))

@'

@W

+
1

2
�2P 2 @

2'

@2P
+

1

2
�2w2W 2 @

2'

@2W
+ �2wWP

@2'

@W@P
: (6)

1See for instance Merton (1971), Section 4.
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We model a RDM by an ecomomic agent taking into account the possibility

of a misspeci�ed model (2) for asset prices. Speci�cally, we consider rational

economic agents which are looking for decision rules that perform well not

only at the reference model (2), but also over a set of relevant (local) model

misspeci�cations of (2).

In order to de�ne and measure such model misspeci�cations we consider

absolutely continuos contaminations of (2) and (3) by introducing families

(T �
t )t�0 of distorted semigroups de�ned by

T �
t (') =

Tt(�')

Tt(�)
; (7)

for nonnegative random variables � such that these operators are well de-

�ned2. The generator AM;� associated to the "�-contaminated" price and

wealth dynamics in Merton's model is easily obtained. It is given by3:

AM;�(') = AM(') + A�(') (9)

where

A�(') = �2P 2@ log �

@P

@'

@P
+ �2w2W 2@ log �

@W

@'

@W

+�2PwW
@ log �

@P

@'

@W
+ �2PwW

@ log �

@W

@'

@P
:

(10)

The associated distorted price dynamics are

dPt =

 
�Pt +

 
�2P 2

t

@ log �

@P
+ �2wtPtWt

@ log �

@W

!!
dt+ �PtdZt (11)

while the budget constraint for distorted current wealth is:

dWt = wt

 
(�� r) +

 
�2Pt

@ log �

@P
+ �2wtWt

@ log �

@W

!!
Wtdt

+(rWt � ct)dt+ wtWt�dZt : (12)

2For a more extensive discussion of these de�nitions we refer to AHS (1999).
3To proove this, remark that (6) de�nes the generator of the di�usions (2) and (3).

De�nition (5) applied to the distorted semigroup (7) then implies:

AM;�(') =
AM (�')� 'AM (�)

�
: (8)

Using the product rule to compute AM (�') one then �nally gets (9).
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These two equations describe the dynamic budget constraint of a RDM when

the conditional distributions of the given reference model are contaminated

by a speci�c absolutely continuous change of measure � (cf. equation (7)).

A RDM will not generally be able to determine which particular model mis-

speci�cation is already a�ecting the assets price dynamics; he will rather have

a rough perception of the set of misspeci�cations which are di�cult to distin-

guish from its reference model. We assume that such a set of relevant model

misspeci�cations can be described by a maximal continuous-time entropy

radius from the given reference model. Before introducing the optimization

problem of a RDM in Merton's model we de�ne the relevant magnitudes in

this respect.

Let

It(�) = Tt

 
�

Tt(�)
� log

 
�

Tt(�)

!!

be the relative entropy of the discrete time density of (Pt;Wt) under the

contaminated model (11) and (12), relative to that implied by the reference

model (2) and (3). It is not a metric, however it measures the discrepancy

of the two densities under scrutiny by the so-called information inequality4.

Further It(�) has an important information-theoretic interpretation; it can

be interpreted as the expected surprise experienced (over the time period

[0; t]) when believing that (2) and (3) describe the model dynamics and being

informed that in fact these are described by (11) and (12); cf. Renyi (1961)

and (1971) for a deeper discussion of this point.

The continuous-time measure of relative entropy to be used in the sequel is5

(see also AHS (1999)):

I 0(�) := lim
t!0

It(�)

t
=

1

�
AM(� log �)� log �

�
AM(�)� 1

�
AM(�) : (13)

Using equation (8) and (9) applied to ' = log � we can write this as:

I 0(�) = AM(log �) + A�(log �)� 1

�
AM(�) =

1

2
A�(log �) : (14)

4See for instance White (1996), Theorem 2.3, p. 9. Remark that It(�) = 0 if and only

if the two densities to be compared are identical almost surely.
5To proove this formula note that:

It(�)

t
=

1

Tt(�)

Tt(� log �)� Tt(�) log Tt(�)

t

=
1

Tt(�)

�
Tt(� log �)� � log �

t
� logTt(�)

(Tt(�)� �)

t
� �

(logTt(�)� log �)

t

�
:

Taking limits as t! 0 and using the continuity of semigroups the desired result is obtained.
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We interpret this continuous time entropy measure as the marginal rate of

change with which expected surprises are experienced when we are continu-

ously informed over time about the underlying data generating mechanism.

As in AHS (1999) we model robustness as a two player (zero sum) game in

which the second player (the nature say) is malevolent and chooses a worst

case model �� from the set of model misspeci�cations that a RDM considers

as relevant. A preference for robustness is introduced through a bound � on

the maximal admissible continuous time entropy "distance" (13) between a

perturbed model � and the reference one.

Let u(�) be the current utility function of consumption and % be a subjective

discounting factor. The two player decision problem of a RDM in Merton's

model is:

J(W ) = max
fc;wg

min
f�g

E

�Z
1

0
exp(�%s) (u(cs)) ds

�
(15)

subject to the dynamic constraints (11) and (12) and to the "maximal con-

tinuous time entropy" restriction:

I 0(�) � � : (16)

We can interpret � al the largest continuous time entropy distance for which

a model misspeci�cation is seen as relevant by the RDM. The choice of �

therefore restricts the amount of (relevant) model misspeci�cation6. From

this perspective we can also interpret � as a parameter modelling a preference

for robustness. Indeed, the larger the parameter �, the less the malevolent

player is restricted in determining a worst case model �� over the relevant

model misspeci�cations, the greater the incentive for robustness in determin-

ing optimal consumption and investment.

Given a preference for robustness � the minimization with respect to � de-

termines a worst case model ��. It is easy to show (see the Appendix):

@ log ��

@P
= �

q
2� � JP

�(P 2
t J

2
P + w2

tW
2
t J

2
W + 2wtWtPtJWJP )

1

2

; (17)

@ log ��

@W
= �

q
2� � JW

�(P 2
t J

2
P + w2

tW
2
t J

2
W + 2wtWtPtJWJP )

1

2

: (18)

In the present setting the problem can be solved by a value function depend-

ing only on current wealth. This implies:

@ log ��

@P
= 0 ;

@ log ��

@W
= �

p
2�

�wtWt

:

6One could try to set this parameter in a way such that model misspeci�cations which

are statistically easily detectable are outside the given maximal �-entropy "radius".
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By inserting these expressions in the perturbed dynamics (11) and (12) prob-

lem (15) can be rewritten as a standard single agent Merton's problem.

3 Optimal Consumption and Portfolio Rules

The single agent problem equivalent to (15) is:

J(W ) = max
fc;wg

E

�Z
1

0
exp(�%s)u(cs)ds

�
(19)

subject to the dynamic constraints

dPt = Pt

�
��

q
2��

�
dt+ �PtdZt ; (20)

dWt =Wtwt

�
(�� r)�

q
2��

�
dt

+(rWt � ct)dt+ wtWt�dZt ; (21)

The corresponding Hamilton Jacobi Bellman (HJB) equation for this problem

reads

%J(W ) = max
c;w

fAM;��J(W ) + u(c)g ; (22)

where

AM;�� = AM + A�� ; A�� = �
q
2� � �wW@W ; (23)

with J(0) = 0 as a boundary condition.

Assuming an isoelastic current utility of consumption

u(c) =
cp

p
; p 2 (0; 1) ;

the HJB equation for this problem reads explicitly

%J = max
w

�
1

2
�2w2W 2JWW +

�
�� r �

q
2��

�
wWJW

�

+rWJW +max
c

(
cp

p
� cJW

)
(24)

and is of the same functional form as the HJB equation for the classical

Merton's problem. It is solved by the well-known functional form

J(W ) = K�(�)W p ; (25)
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with an � dependent parameter K�(�) given by

 
%

1� p
� p

 
(�� r �p

2��)2

2�2(1� p)2
+

r

1� p

!!p�1

= pK�(�) : (26)

The implied optimal rules are:

wRM(�) =
(�� r �p

2��)

�2(1� p)
; cRM(�) = (pK�(�))

1

p�1W : (27)

As a consequence we see7:

@wRM

@�
= � 1

�(1� p)
p
2�

< 0 ;
@cRM

@�
=

p(�� r �p
2��)

�(1� p)2
p
2�

> 0 :(28)

We thus conclude:

� Robustness increases optimal consumption if and only if the uncertainty

adjusted market price of risk

�� r �p
2�

�

is larger than zero8 and lowers the optimal fraction of wealth invested

in risky assets,

� When utility is logarithmic (that is for p! 0), robustness only reduces

the optimal fraction allocated to risky assets. Optimal consumption is

independent of the �nancial parameters, except through the e�ect of

changing this fraction.

4 Robust Pricing

Let (c
opt
t ) denote the optimal consumption plans of a RDM and introduce a

further risky asset that does not pay dividends, with price dynamics

d ~Pt = ~�t ~Ptdt+ ~�t ~PtdZt ; (29)

where (~�t; ~�t) are some corresponding drift and di�usion processes under the

given reference model.

7Some graphs of the implied optimal rules in dependence of p and � are presented in

the Appendix for a possible choice of the parameters �, �, % and r.
8We discuss the market price of risk in the next section. Without loss of generality we

will assume in the sequel this quantity to be non-negative.
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This implies a "worst case model" market price of risk given by

~�t �
p
2�~�t � r

~�t
= �c

opt
t ucc(c

opt
t )

uc(c
opt
t )

� �copt
t

= (1� p)�copt
t

; (30)

where (�copt
t

) is the di�usion process of optimal consumption growth.

We therefore obtain a decomposition of the market price of risk for the given

reference model as:

~�t � r

~�t
= (1� p)�copt

t

+
q
2� : (31)

The �rst term on the right hand side of (31) corresponds to the usual con-

sumption based motivation for the market price of risk9. The second term

on the right hand side of (31) corresponds to an extra equilibrium reward for

risk that arises because of a possible misspeci�cation of the given reference

model for asset prices. This term is positive and enhances the market price

of risk resulting from the pure consumption based motives.

Using the derived robust optimal rules and the linearity in wealth of optimal

consumption the dynamics of aggregate optimal consumption are

dc
opt
t = c

opt
t

 
r +

((�� r)�p
2��)2

�2(1� p)
� (pK�(�))

1

p�1

!
dt

+

 
(�� r)�p

2��

�(1� p)

!
c
opt
t dZt : (32)

A preference for robustness therefore implies:

� A lower instantaneous variance of equilibrium optimal aggregate con-

sumption growth,

� A lower instantaneous expected growth of equilibrium optimal aggre-

gate consumption.

The consumption based part of the implied market price of risk is:

�� r

�
�
q
2� : (33)

As a consequence, robustness yields a lower consumption based shadow mar-

ket price of risk in Merton's model. This part is independent of the risk

9Note however, that this term depends on the volatility of optimal consumption growth

under the selected worth case model which will be lower than the volatility of optimal

consumption growth when no model misspeci�cation is assumed.
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aversion parameter p but depends crucially on the amount of risk aversion

to model misspeci�cation (which is a function of �)10. The resulting market

prices of risk also re
ects the price of model uncertainty risk and it is higher

by a factor
p
�.

5 Conclusions

We proposed a simple robust version of Merton's (1969) and (1971) model of

intertemporal consumption and portfolio choice where the optimal rules and

the implied market price of risk of a representative RDM can be computed

explicitly.

Robustness a�ects the optimal rules through a substitution of risky invest-

ment with saving in riskless assets and (or) current consumption. The con-

sumption based part of the market price of risk is lower, as a consequence

of a lower volatility of consumption growth, and is enxanced by a market

price for model uncertainty that is monotonically related to the robustness

parameter and that is independent of the risk aversion parameter.

10Indeed, the substitution e�ect discussed in the last section produced a redistribution

of optimal wealth in favour of riskless assets and current consumption. This gives a

lower volatility of aggregated wealth growth. By the linearity of optimal consumption

in optimal wealth this implies a lower volatility of aggregated consumption growth too,

that is a lower aggregated consumption risk. Since the assumed utility function are of

the constant relative risk aversion type, the consumption based part of the equilibrium

shadow market price of risk implied by a concern for robustness has to be lower.
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6 Appendix

Proof of (17) and (18): We consider the minimization with respect to �

of the objective function in (15) under the entropy constraint (16). Using

(14) the HJB equation corresponding to this problem reads:

%J(W ) = min
�

�
AM;�J(W ) + u(c) + �

�
1

2
A�(log �)� �

��
; (34)

with the compensatory slackness conditions:

�

�
1

2
A�(log �)� �

�
= 0 ; � � 0 : (35)

By (8) and the explicit expression (10) a di�erentiation with respect to @ log �

@P

and @ log �

@W
yields the optimality conditions:

�2P 2@ log �

@P
+ �2PwW

@ log �

@W
= �1

�
(�2P 2JP + �2PwWJW ) ;

�2w2W 2@ log �

@W
+ �2PwW

@ log �

@P
= �1

�
(�2w2W 2JW + �2PwWJP ) ;

that is:

@ log �

@P
= �1

�
� JP ;

@ log �

@W
= �1

�
� JW : (36)

Finally, � is given by the equation:

� =
1

2
A�(log �)

=
1

2
�2P 2@ log �

@P

@ log �

@P
+ �2w2W 2@ log �

@W

@ log �

@W

+�2PwW
@ log �

@P

@ log �

@W
+ �2PwW

@ log �

@W

@ log �

@P

= � 1

2�2

�
�2P 2J2

P + �2w2W 2J2
W + �2PwWJPJW + �2PwWJWJP

�
;

using (36). This gives (17) and (18) in the paper.
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Figures

Figure 1: Optimal consumption cRM (�) (with W normalized to 1) as a function

of the risk aversion parameter p (between 0.1 and 0.6) and the maximum entropy

distance � (between 0 and 0.03). The other parameters were set to % = 0:08,

r = 0:05, � = 0:10 and � = 0:2.
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Figure 2: Optimal investment in risky assets wRM (�) as a function of the risk

aversion parameter p (between 0.1 and 0.6) and the maximum entropy distance

� (between 0 and 0.03). The other parameters were set to % = 0:08, r = 0:05,

� = 0:10 and � = 0:2.
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