Multicoordinated Agreement Protocols and the
Log Service

Doctoral Dissertation submitted to the
Faculty of Informatics of the University of Lugano
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by
Léasaro Jonas Camargos

under the supervision of

Prof. Fernando Pedone and Prof. Edmundo R.M. Madeira

April 2008

Dissertation Committee

Prof. Walter Binder University of Lugano, Switzerland
Prof. Antonio Carzaniga University of Lugano, Switzerland
Prof. Christof Fetzer Technische Universitiat Dresden, Germany

Prof. Rodrigo Rodrigues Max Plank Institute for Software Systems, Germany

Dissertation accepted on 29 April 2008

Supervisor Co-Supervisor
Prof. Fernando Pedone Prof. Edmundo R.M. Madeira

PhD program director
Prof. Dr. Fabio Crestani

I certify that except where due acknowledgement has been given, the work pre-
sented in this thesis is that of the author alone; the work has not been submitted
previously, in whole or in part, to qualify for any other academic award; and the
content of the thesis is the result of work which has been carried out since the offi-
cial commencement date of the approved research program.

Lasaro Jonas Camargos
Lugano, 29 April 2008

il

Abstract

Agreement problems are a common abstraction in distributed systems. They appear
when the components of the system must concur on reconfigurations, changes of
state, or in lines of action in general. Examples of agreement problems are Consen-
sus, Atomic Commitment, and Atomic Broadcast. In this thesis we investigate these
abstractions in the context of the environment in which they will run and the appli-
cations that they will serve; in general, we consider the asynchronous crash-recovery
model. The goal is to devise protocols that explore the contextual information to
deliver improved availability. The correctness of our protocols holds even when the
extra assumptions do not.

In the first part of this thesis we explore the following property: messages broad-
cast in small networks tend to be delivered in order and reliably. We make three
contributions in this part. The first contribution is to turn known Consensus al-
gorithms that harness this ordering property to reach agreement in the crash-stop
model into practical protocols. That is, protocols that tolerate message losses and re-
covery after crashes, efficiently. Our protocols ensure progress even in the presence
of failures, if spontaneous ordering holds frequently. In the absence of spontaneous
ordering, some other assumption is required to cope with failures. The second con-
tribution of this thesis is to generalize one of our crash-recovery consensus protocols
as a “multicoordinated” mode of a hybrid Consensus protocol, that may use sponta-
neous ordering or failure detection to progress. Compared to other protocols, ours
provide improved availability with no price in resilience. The third contribution is to
employ this new mode to solve Generalized Consensus, a problem that generalizes a
series of other agreement problems and, hence, is of much practical interest. More-
over, we considered several aspects of solving this problem in practice, which had
not been considered before. As a result, our Generalized Consensus protocol fea-
tures graceful degradation, load balancing, and is parsimonious in accessing stable
storage.

In the second part of this thesis we have considered agreement problems in wide
area networks organized hierarchically. More specifically, we considered a topology
that is commonplace in the data centers of large corporations: groups of nodes, with
large-bandwidth low-latency links connecting the nodes in the same group, and

il

iv Abstract

slow and limited links connecting nodes in different groups. In such environments,
latency is clearly a major concern and reconfiguration procedures that render the
agreement protocol momentarily unavailable must be avoided as much as possible.
Our contribution here is in avoiding reconfigurations and improving the availability
of a collision fast agreement protocol. That is, a protocol that can reach agreement
in two intergroup communication steps, irrespectively to concurrent proposals. Be-
sides the use of a multicoordinated approach, we employed multicast primitives
and consensus to restrict some reconfigurations to within groups, where they are
less expensive.

In the last part of this thesis we study the problem of terminating distributed
transactions. The problem consists of enforcing agreement among the parties on
whether to commit or rollback the transaction and ensuring the durability of com-
mitted transactions. Our contribution in this topic is an abstract log service that
detaches the termination problem from the processes actually performing the trans-
actions. The service works as a black box and abstracts its implementation details
from the application utilizing it. Moreover, it allows slow and failed resource man-
agers be re-started on different hosts without relying on the stable storage of the
previous host. We provide two implementations of the service, which we evaluated
experimentally.

Resumo

Problemas de acordo, como Consenso, Terminacdo Atomica e Difusdo Atdémica, sdo
abstragcoes comuns em sistemas distribuidos. Eles ocorrem quando os componen-
tes do sistema precisam concordar em reconfiguragcoes, mudancas de estado ou em
linhas de acdo em geral. Nesta tese, investigamos estes problemas no contexto do
ambiente e aplicacdes em que serdo utilizados. O modelo geral € o assincrono su-
jeito a quebras com possivel posterior recuperacdo. Nossa meta é desenvolver proto-
colos que explorem esta informacdo contextual para prover maior disponibilidade,
e que se mantenham corretos mesmo que algumas das prerrogativas do contexto
tornem-se invalidas.

Na primeira parte da tese, exploramos a seguinte propriedade: mensagens di-
fundidas em pequenas redes tendem a ser entregues ordenada e confiavelmente.
Nés fazemos trés contribuicOes nesta parte da tese. A primeira é a transformacéo
de algoritmos conhecidos para o modelo quebra-e-para, que utilizam a propriedade
de ordenacdo mencionada, em protocolos praticos. Isto é, protocolos que toleram
perda de mensagens e recuperacdo apds a quebra. Nossos protocolos garantem pro-
gresso na presenca de falhas, contanto que mensagens sejam espontaneamente or-
denadas freqiientemente. Na auséncia de ordenacdo expontanea, outras prerrogati-
vas sdo necessdrias para contornar falhas. A segunda contribuicdo € a generalizacéo
de um dos algoritmos citados acima em um modo de execucdo “multi-coordenado”
em um protocolo hibrido de consenso, que usa ou ordenacdo expontdnea ou detec-
¢do de falhas para progredir. Em comparacgdo a outros protocolos, o nosso prové
maior disponibilidade sem comprometer resiliéncia. A terceira contribuicao € a uti-
lizacdo do modo multi-coordenado para resolver Consenso Generalizado, um pro-
blema que generaliza uma série de outros e que, portanto, é de grande interesse
pratico. Além disso, fizemos diversas consideragdes sobre aspectos praticos da uti-
lizacdo deste protocolo. Como resultado, nosso protocolo perde desempenho gra-
dualmente no caso de condicbes desfavordveis, permite o balanceamento de carga
sobre os coordenadores, e acessa a memoria estavel parcimoniosamente.

Na segunda parte da tese, consideramos problemas de acordo no contexto de re-
des organizadas hierarquicamente. Em especifico, nés consideramos uma topologia
usada nos data centers de grandes cooporacoes: grupos de maquinas conectadas in-

vi Resumo

ternamente por links de baixa laténcia, mas por links mais lentos entre grupos. Em
tais cendrios, laténcia é claramente um fator importante e reconfiguracdes, onerosas
aos protocolos, devem ser evitadas tanto quanto possivel. Nossa contribuicdo neste
tépico esta em evitar reconfiguracdes e melhorar a disponibilidade de um protocolo
de acordo que é rdpido a despeito de colisdes. Isto é, um protocolo que consegue
chegar a uma decisdo em dois passos inter-grupos mesmo quando vdarias propos-
tas sdo feitas concorrentementes. Além do uso da técnica de multicoordenacéo,
nds usamos primitivas de multicast e consenso para conter algumas reconfiguragoes
dentro dos grupos, onde seus custos sdo menores.

Na ultima parte da tese nds estudamos o problema de terminacéo de transacoes
distribuidas. O problema consiste em garantir que os vdrios participantes da tran-
sacdo concordem em aplicar ou cancelar de forma consistente as suas operacdes no
contexto da transacdo. Além disso, é necessario garantir a durabilidade das altera-
¢Oes feitas por transagdes terminadas com sucesso. Nossa contribuicdo neste tépico
é um servigo de log que abstrai e desassocia a terminacao de transagdes dos processos
que executam tais transagdes. O servico funciona como uma caixa preta e permite
que resource managers lentos ou falhos sejam reiniciados em servidores diferentes,
sem dependéncias na memdria estavel do servidor em que executava anteriormente.
Nés apresentamos e avaliamos experimentalmente duas implementagdes do servico.

Preface

This thesis describes my PhD work, initiated in 2003 at the State University of Camp-
inas, under the supervision of Prof. Edmundo Madeira, and finished in 2008 at the
University of Lugano, under the supervision Prof. Fernando Pedone. During this pe-
riod I have worked on different problems, with different approaches, and in collabo-
ration with other PhD students. The work, however, has always been on agreement
problems.

In the early “middleware” stage of my studies I implemented an agreement li-
brary featuring the weak ordering based consensus algorithms presented in the third
chapter of this thesis. In modularizing the library and making the algorithms inter-
changeable with a Paxos implementation, I began to understand what Mike Burrows
allegedly meant with “In my experience, all distributed consensus algorithms are ei-
ther 1: Paxos, 2: Paxos with unnecessary extra crust, or 3: broken.” While I do not
completely agree with him, I believe that the formalism in which Paxos was specified
is an invaluable tool to understand and compare agreement algorithms. Mainly, the
separation of concerns in it. The work in [] presented my
“paxonized” weak ordering based protocols and compared them with Paxos, the
classic one.

Database replication came into play in my studies soon after I moved to Switzer-
land and joined the work presented in []. Our transaction
processing protocol was very efficient, as long as the database using it could afford
serializing the execution of its transactions. The killer application for the protocol,
which we then called “sprint”, was an in-memory database.

When the new Sprint appeared, it was a cluster data management system, fea-
turing replication and partitioning of data, and my agreement library was an im-
portant part of it. I rewrote the library to better fit the project, and it became a
lightweight group communication library, later used in two other projects within
our research group. Sprint is described in [1, and the group
communication within it was abstracted as the log service presented in the last part
of this thesis [].

Given these good experiences, my work focused on optimizing agreement proto-
cols to specific scenarios, but in a more abstract way. First improving resilience with

vil

viil Resumo

multicoordination [s], then minimiz-
ing the effects of concurrent proposals [], and finally mixing
both approaches to solve agreement among groups.
To conclude, part of my work was done in collaboration with other researchers.
In this thesis, I focus on the work in which I have been the primary contributor.
These are the works presented in [, ,
] and the agreement protocol for groups introduced in this
thesis.

[Camargos et al., 2006a] Camargos, L., Madeira, E. R. M., and Pedone, E (2006a).
Optimal and practical wab-based consensus algorithms. In Euro-Par 2006

Parallel Processing, volume 4128 of Lecture Notes in Computer Science, pages
549-558, Berlin / Heidelberg. Springer.

[Camargos et al., 2006b] Camargos, L., Pedone, E, and Schmidt, R. (2006b). A
primary-backup protocol for in-memory database replication. In NCA ’06: Pro-
ceedings of the Fifth IEEE International Symposium on Network Computing and
Applications, pages 204-211, Washington, DC, USA. IEEE Computer Society.

[Camargos et al., 2007a] Camargos, L., Pedone, E, and Wieloch, M. (2007a).
Sprint: a middleware for high-performance transaction processing. In Eu-
roSys '07: Proceedings of the 2007 conference on EuroSys, pages 385-398, New
York, NY, USA. ACM Press.

[Camargos et al., 2007b] Camargos, L. J., Schmidt, R. M., and Pedone, E (2007b).
Multicoordinated paxos: Brief announcement. In PODC ’07: Proceedings of
the twenty-sixth annual ACM symposium on Principles of distributed computing,
pages 316-317, New York, NY, USA. ACM Press.

[Camargos et al., 2008a] Camargos, L., Schmidt, R., and Pedone, E (2008a). Mul-
ticoordinated agreement protocols for higher availabilty. In NCA 08: Proceed-
ings of the Seventh IEEE International Symposium on Network Computing and
Applications, Washington, DC, USA. IEEE Computer Society.

[Camargos et al., 2008b] Camargos, L., Wieloch, M., Pedone, E, and Madeira,
E. (2008b). A highly available log service for transaction termination. In
Proceedings of the seventh International Symposium on Parallel and Distributed
Computing (ISPDC 2008).

Acknowledgements

This PhD is the culmination of a long sequence of steps started several years ago.
For supporting me in the decision of starting each of these steps and helping me
getting to the next, I would like to thank my family. Dona Ida, Ewe, Sebastido,
“Seu” Euripedes, Dona Neuza: esta conquista também ¢é sua.

Everybody says that the most important outcome of a Ph.D. is what you learn
in the process. For helping me learn, I would like to thank my advisors, Profs.
Edmundo Madeira and Fernando Pedone.

I would like to also thank everybody who in a way or another contributed and
supported me in finishing this PhD. For the discussions, feedback on my work, chats
and laughs, and for priceless dinners, I would like to thank all my lab-mates, col-
leagues, and friends that I have made in Campinas, Lugano, and Seattle. The follow-
ing is a list of some of them in order of “appearance”: Herr, Pard, Bezerra, Claudio,
Rodrigo, Bianca, Vaide, Marcin, Nicholas, Marija, Dan, Avinash, Pino, Deniz, Avi,
Alex, Aliaksey, and Amir.

X

Acknowledgements

Contents

Contents

List of Figures

List of Tables

1

Introduction

1.1 About Rounds, Consensus, and Agreement Problems
1.2 Transaction Termination
1.3 Contributions e
1.4 Algorithmic Notation
1.5 SystemModel
1.6 ThesisOutline,

Multicoordinated Consensus

2.1 Consensus and the FLP Impossibility Result
2.1.1 Randomization and Spontaneous Ordering
2.1.2 Synchronism and Failure Detection.
2.1.3 Availability Issues of Leader Based Protocols

2.2 WAB-Based CONSENSUS . . . v v v v v v vt e et e et e et e e e e e e
2.2.1 Weak Atomic Broadcast
2.2.2 B¥-CONSENSUS . « v v v v v e e e e e e e e e e e e
2.2.3 R*-CONSENSUS . & & v v vttt e e e et e e e e e e e e
2.2.4 Correctnessand Livenesso i i

2.3 Multi-Coordinated Consensus. v v v v v v v v v v e e e e e
2.3.1 ClassicPaxos v v vt e e e e
2.3.2 FastPaxos e e
2.3.3 Multi-Coordinated Rounds and Coord-Quorums
234 Algorithm
2.3.5 Correctnessand Liveness

2.4 Final Remarks and Related Work

xi

xi

Xvii

NP WN -

CONTENTS

3 Multicoordinated Generalized Consensus and Generic Broadcast

3.1 OneProblemtoRule ThemAll
3.2 Generalized CONSENSUS . . « & v v v v vt it et e e e et e et e
3.2.1 C-SEruCtsS oo e e e e e e e e e e
3.2.2 Problem Definition,
3.3 Lamport’s Generalized Paxos
3.4 Multicoordinated Paxos e
3.4.1 TheAlgorithm,
3.4.2 The ProvedSafe Function
3.4.3 Availability and Load-Balancing with Multiple Coordinators .
3.4.4 Collisions
3.4.5 Reducingdiskwrites
3.4.6 Settingroundsand quorumsot
3.4.7 Ensuring Liveness
3.5 Solving Generic Broadcast with Multicoordinated Paxos
3.5.1 Command Histories and Formal Definition
3.5.2 A Simple Command History
3.5.3 ARun of Generic Broadcast
3.6 Final Remarks and Related Work

Fast Agreement for Groups

4.1 Agreement in Networks of Groups

4.2 Collision-Fast Paxos v v v v it it e e e e
4.2.1 Value Mapping Sets v it
4.2.2 M-CONSENSUS . « « v v v vt ettt e et e et e et e e
4.2.3 Collision-Fast Paxos

4.3 Multicoordination and Collision-Fast Paxos
4.3.1 BasicAlgorithm.
4.3.2 Adding Intra-group Reconfiguration
4.3.3 Correctnessand Livenesst

4.4 Generalizing Collision-Fast Rounds

4.5 Final Remarks and Related Work

Log Service for Transaction Termination

5.1 LogService i i e e e

5.2 Problem statement

5.3 TheLogServicettt
5.3.1 The Log Service Specification
5.3.2 Termination and Recovery
5.3.3 COITECINESS . v v v v v vt et e et et e e

5.4 From the specification to implementations

41
41
43
43
44
45
48
49
53
54
56
58
59
62
64
65
66
68
69

73
73
76
76
77
78
79
81
86
88
90
91

93

CONTENTS xiii
5.5 Coordinated Implementation 102
5.5.1 OVeIVIEW . . o v v ot e e e e e e e e e e e e e e 102

5.5.2 TheAlgorithm 103

5.6 Uncoordinated Implementation 107
5.6.1 OVeIVIEW . . . v v it it e et e e e e e e e 107

5.6.2 Algorithm 108

5.7 Evaluation e 111
5.7.1 Analytical Evaluation 111

5.7.2 Experimental Evaluation 113

5.8 Final Remarks and Related Work 115

6 Conclusion 117
6.1 Contributions i e e 117
6.2 Future Work e 119

A Multicoordinated Paxos 121
A.1 Proof of COITectness oo v v ittt e et e e e e 121
A.1.1 Preliminaries i 121

A.1.2 Abstract Multicoordinated Paxos 123

A.1.3 Distributed Abstract Multicoordinated Paxos 137

A.1.4 Multicoordinated Paxos e 148

A.1.5 CollisionRecovery 154

A1.6 LIVENESS v i i e e e e e 154

A.2 TLAT Specifications oo i it 158
A.2.1 Helper Specifications 158

A.2.2 Abstract Multicoordinated Paxos 162

A.2.3 Distributed Abstract Multicoordinated Paxos 165

A.2.4 Basic Multicoordinated Paxos 170

A.2.5 Complete Multicoordinated Paxos 174

B Log Service 185
B.1 Abstract Specification. e 185
B.1.1 Constants v v v it i e e e e e 185

B.1.2 Specification e 186

B.1.3 CoOrrectness ¢ i i i it it e e e e e e e e 192

B.2 Coordinated Implementationo 197
B.2.1 Specification 197

B.2.2 ImplementationProof 206

B.3 Uncoordinated Implementation 210
B.3.1 Specification 210

B.3.2 ImplementationProof 220

Xiv CONTENTS

Bibliography 225

List of Figures

2.1
2.2

2.3

3.1

3.2

4.1

5.1

Spontaneous Order in WAB.
Dependencies among actions of proposer p, coordinator ¢, acceptor
a and learner [, for some round ¢. — is the regular happens-before
relation. e
() is an i-quorum, R and S are k-quorums, and v and w are the
values accepted by acceptorsin QN Sand QNR.

A system of four acceptors and their accepted values. The two marked
sets of acceptors constitute qQUOTUMS. v v v v v v v v v v v e
Multicoordinated round followed by a single-coordinated round: Af-
ter a series of successful appends to the accepted c-hist, one con-
flict happens and one coordinator changes to the single-coordinated
mode to solve the conflict. Observe how learners learn different but
compatible prefixes. The dashed arrows show the leader polling the
acceptors for their accepted c-hists.

Agents distributed in groups in a wide area network: a common setup
for corporative networks. Agents in a group G,,0 < i < m, are phys-
ically close to each other. Agents in A are spread geographically. . . .

Maximum throughput versus response time of TPC-C transactions.
The number of clients is shown next to the curves. Disk writes at
acceptorswereenabled. L L oL

XV

69

74

115

xvi LIST OF FIGURES

List of Tables

5.1 The cost of some commit protocols

5.2 Coord/Uncoord throughput ratio for 10ms latency

XVvil

xviii LIST OF TABLES

List of Algorithms

ONNOSOCUu U b, P WWNDNR

Notationexample.. e 7
B*-Consensus v v vt it e e e e 16
B*-Consensus(continued) 18
R*-CONSENSUS . . . v v vt e e e e e e e e e e e e e e e e 20
R*-Consensus (continued) o v v v v vttt e 21
ClassiCc PaXos v v o e e e e e e e 26
Classic Paxos (Continued) v v v vt e e, 28
Multicoordinated CONSENSUS v v v v v v v e e et e e e e 35
Multicoordinated Consensus (Continued) 36
PickValue(Q) in Multicoordinated Consensus 37
Multicoordinated Paxos i 50
Multicoordinated Paxos (Continued) 51
Longest common prefix of twoc-hists Hand 7.. 67
Longest common prefix of asetof c-hists S. 67
Determines if two c-hists H and [are compatible. 68
Shortest common extension of two c-hists H and /. 68
Shortest common extension of a set of c-hists S. 68
Basic Implementation Multicoordinated Collision-Fast Paxos 82
BasicMCF (Continued) o o i ittt e e e e 84
Log service specification 99
Log service specification (continued) 100
Stubs to implement Algorithm 14 104
Coordinator’s protocol 106
Coordinator’s protocol (Continued) 107

Uncoordinated implementation with stubs for Algorithm 14 (MPL £) 109
Uncoordinated implementation with stubs for Algorithm 14 (MPL k)
(Continued) i i i i i 110

Xix

XX

LIST OF ALGORITHMS

Chapter 1

Introduction

In order to make an apple pie from scratch,
you must first create the universe.
Carl Sagan

A distributed application is a composite of agents that perform local actions and
exchange information to cooperatively perform some global task. These agents—
machines, processors, or processes—are often required to synchronize their actions
to meet some consistency criteria: only one agent may access a given resource at any
point in time; all must commit the effect of their actions or rollback to a previous
state; a certain agent must be excluded from any future interactions. Synchronizing
actions, here, is short for reaching agreement.

Research on agreement problems has been an active field for at least thirty years
and resulted in many algorithms for different computational models, lower and
upper bounds, and an incredible amount of publications. Nonetheless, we feel
that there is still room for improvement, mainly concerning the practicality of al-
gorithms.

The focus of this thesis is on practical protocols for agreement problems in dis-
tributed asynchronous systems. That is, protocols that cope with failures of partici-
pants and their posterior recover in a graceful way; protocols that explore synchro-
nism and optimistic assumptions to progress, but do not rely on them to remain cor-
rect and, more importantly, that adapt when assumptions no longer hold; protocols
that explore building blocks readily available in todays infrastructures, properties of
the environments in which they run, and the characteristics of the application that
they serve.

2 Introduction

1.1 About Rounds, Consensus, and Agreement Problems

Most agreement problems can be subsumed by the Consensus problem, in which
agents must agree on one out of a set of proposed values. Consensus algorithms
perform in stages that reflect the very nature of the problem: proposals precede a
deliberation phase, that precedes the learning of a decision. To be fault-tolerant, al-
gorithms must be ready to retry this cycle, guaranteeing that a decision in a previous
cycle is honored in the next ones. We call each of these tries a round.

The fastest general round has the agents collecting the proposals, selecting one
as their proposals, and exchanging their selections. Agents then decide for the pro-
posal selected by at least a quorum of agents. In an asynchronous system, we
can rely on overlapping quorums to ensure that no two different proposals are
decided. Breaking a tie when starting a new round and searching for previous
decisions, however, requires larger overlappings—in general, every three quorums
must intersect—or more time—by searching in two phases instead of one, simply
overlapping quorums are enough.

While asynchronism may prevent the progress of any fault-tolerant consensus
algorithm [], the approach described the in the previous para-
graph may not decide even when the environment behaves synchronously and no
failure occurs. If multiple proposals are selected, but no one is ever selected by a
full quorum in any round, then no decision is reached. Agents may circumvent
this problem and eventually select the same value with the aid of random ora-
cles [,] or based on the order in which the options are pre-
sented to them [, , 1.
Another way is to avoid multiple possibilities by having one of the agents filter all
but one proposal in the round [,]. The problem
then becomes selecting this special agent [1.

Although in the literature most algorithms are specified with a single set of
agents, in actual systems some agents are responsible for proposing values, some
only care for learning the decision, and just a subset of them actually work in reach-
ing the agreement. From the previous paragraph, there is yet another set of agents
that coordinate rounds, the coordinators.

Coordinators are of special interest in that they are tightly related to the algo-
rithms’ availability. If multiple coordinators start their rounds in parallel, none may
succeed in reaching agreement. Hence, a single coordinator should be picked. On
the one hand, a decision can only be reached with such a coordinator’s participation,
making it extremely important to replace it as soon as it fails. On the other hand,
aggressive failure detection is resource consuming and error prone, and replacing
a coordinator is not done without a price: the algorithm will be unavailable while
the new coordinator contacts the other agents to determine any previously decided
value. Therefore, replacement should be avoided as much as possible.

1.2 Transaction Termination 3

While discussing availability issues due to coordinator replacement in a consen-
sus instance may seem frivolous at first, the impression fades when considered the
way consensus is used in practice. A typical example is the implementation of a
replicated state machine [,]. This well known tech-
nique consists of implementing reliable services by replicating simpler instances of
the services on failure-independent processors. Replicas consistently change their
states by applying deterministic commands from an agreed sequence. A consensus
instance can be used to decide on each command of the sequence. To make the
implementation efficient, all instances may run in parallel, share the same elected
coordinator, and overlap parts of their rounds. Hence, being unavailable means
delaying not one, but all ongoing decisions.

In many replicated state machines and similar applications, some commands
submitted to the servers are commutable and do not have to be ordered. The
straightforward use of consensus, which does not capture this commutability prop-
erty, would unnecessarily order them. Generalized consensus [1,
which in fact generalizes many agreement problems, captures the notion of com-
mutability and may be used to agree not on a sequence, but on a partial order
of commands. This particular instance of generalized consensus is known as the
generic broadcast problem []. The only algorithm for gen-
eralized consensus, that we are aware of, has the same availability problems of con-
sensus algorithms that we have pointed in the previous paragraphs: it either uses
large quorums or relies on a single round coordinator to ensure progress.

The power of generalized consensus and generic broadcast comes from identify-
ing conflicting proposals, e.g., non-commutable commands, so that they do not have
to be unnecessarily ordered. A different approach is to ignore conflicts a priori to
deliver them as fast as possible and use the conflict information to order delivered
proposals a posteriori. For example, in M-Consensus [] agents
agree not on a single value per instance, but on a mapping from each proposer to
its proposal or a nil value. On the one hand, if no two proposals are made by the
same proposer, then decisions can be reached very fast and, after a full mapping is
decided, a deterministic function may flatten the mapping into a sequence. On the
other hand, because in general the deterministic function requires a full mapping
and because only a proposer can propose for itself, the availability of M-Consensus
protocols are bound to the availability of these proposers.

1.2 Transaction Termination
Many distributed systems’ agreement requirements may be seen as the more abstract

atomic commitment problem, most notably data management systems. In essence,
to terminate a distributed transaction, each participating resource manager votes

4 Introduction

to either commit or abort the transaction. If all participants vote to commit the
transaction, then this must be the final outcome; if any participant votes for the
abortion, then the transaction is aborted. For most real systems, this definition of
the problem is not practical since it requires the vote of every participant to be
accounted. This restriction is relaxed in non-blocking atomic commitment, in which
the transaction may be aborted if any participant is suspected of having crashed.
Commit must be guaranteed only if all participants vote to commit the transaction
and none is suspected of failure. In this thesis we consider this weaker problem.

Widely used in practice, the Two-Phase Commit protocol (2PC) is non-blocking
in the presence of failures of all but one process, the transaction manager. Gray
and Lamport’s Paxos Commit [] is a non-blocking atomic
commitment protocol in which the casting of a vote is reduced to a Paxos consensus
instance. Failures are naturally handled by letting participants enforce termination
of each other’s instances, and the transaction manager is required only to trigger the
termination upon completion of a transaction; if it fails, resource managers simply
abort the transaction. Hence, such a reduction to consensus is very powerful.

Even when atomicity is enforced by the commit protocol, if resource managers
are allowed to forget the updates of a committed transactions, for example due to
a temporary failure, then the system may still get to an inconsistent state. Hence,
besides ensuring atomicity, a transaction termination protocol may be required to
enforce the durability of committed transactions. That is, to ensure that all changes
done by committed transaction are reflected by any future state of the database, in
spite of any failures. In conventional protocols, durability is achieved by having each
resource manager store its updates in a local stable media before voting. Should it
fail, at recovery time the resource manager can read the committed updates from
the local storage and replay them to recover its previous state. A drawback of this
approach is that it couples the availability of the resource manager with the avail-
ability of the server hosting it.

1.3 Contributions

This thesis makes the following contributions.

Multicoordinated Consensus Regarding the consensus problem, we have made
two contributions. The first contribution is a pair of protocols, namely B*-Consensus
and R*-Consensus, which explore spontaneous ordering to solve consensus in the
crash-recovery model. Comparatively, these protocols trade resilience for latency:
B*-Consensus takes three communication steps to finish and tolerates the perma-
nent failure of any minority of the agents. R*-Consensus decides in two steps, but
tolerates less than one third of permanent failures.

1.3 Contributions 5

The second contribution is the generalization of B*-Consensus as a multicoordi-
nated mode of execution for agreement protocols. In this mode, the coordinator of
each round is replaced by a set of overlapping quorums of coordinators. As long as
at least one quorum of coordinators is alive, there is no need to change rounds and
incur in the temporary unavailability resulting from it. We present a multicoordi-
nated consensus protocol that extends Fast Paxos [1, with its fast and
classic modes. The protocol can switch to different types of round and adapt to envi-
ronment changes: slower network, more message losses, higher or lower workload,
and spontaneous message ordering.

Multicoordinated Generalized Consensus The third contribution is the use of
multicoordination to solve generalized consensus. While the use of semantic in-
formation minimizes the chances of the coordinators in the same round disagree-
ing, multicoordination minimizes unwanted round changes. Hence, our protocol,
Multicoordinated Paxos, is a synergism of these techniques. We present the proto-
col along with a discussion of various aspects of using it in practice, and present
a simplified instantiation of the protocol that solves the Generic Broadcast prob-
lem [].

Multicoordinated Agreement for Groups The fourth contribution regards the
use of multicoordination in hierarchically organized networks. In these scenarios,
coordinator quorums will increase availability, but will still require proposals to
travel from all ends of the network to reach the quorum. Spreading the quorums
will not improve the situation since quorums must be overlapping. We present a
Multicoordinated Consensus protocol that solves this problem by splitting coordina-
tor quorums in partially independent systems, and use the M-Consensus approach
to reach agreement. We also show how this protocol can be improved by a recursive
use of consensus and multicast technology.

Log Service Our last contribution is to abstract the atomicity and durability prob-
lems in transaction termination in terms of a Log Service. The service collects the
updates performed by each participant as well as their votes (commit and abort)
for each transaction they take part. When enough votes are collected, the service
contacts the participants and informs them the transaction outcome, based on the
votes received. Defining transaction termination in terms of our log service has two
advantages. First, transaction termination becomes oblivious to particularities of
the system, taken care of or explored by the services implementation transparently.
Second, the overall availability of resource managers is improved by using a highly
available implementation of the service. As mentioned earlier, the service can be

6 Introduction

used to migrate crashed or slow resource managers to functional and more depend-
able hosts. As a consequence, resource managers may choose to asynchronously
store their state locally for later recovery or rely solely on the state kept at the log
service.

Besides the abstract specification, we present two implementations of the log
service. Both implementations rely on consensus to achieve high availability in dif-
ferent ways, with performance implications on both the termination of transactions
and on the recovery of resource managers. In the first implementation, uncoordi-
nated, voting is completely distributed, abstracting Paxos Commit and, by extension,
2PC. In the second, coordinated, voting is managed by an easily replaceable coordi-
nator agent. The two approaches abstract the trade-off “message complexity versus
number of communication steps” between atomic commit protocols. We compare
both approaches analytically and experimentally to previous work in the area and
show that reducing the number of communication steps at the expense of increasing
the message complexity not always leads to better performance.

1.4 Algorithmic Notation

In this thesis we present algorithms as state machines, specified in terms of atomic
actions, state functions, and operators. The notation we use to define each of them
should to be less ambiguous than the normally used pseudo-code, but more easily
readable than the TLA" [] specifications in which we have specified
our main algorithms.

An action can only be executed if all of its pre-conditions are satisfied, in which
case we say that the action is enabled. An enabled action executes atomically and
changes the state machine accordingly. State functions evaluate some condition
over the state of the state machine and are useful to express properties; a state
function that evaluates to a boolean value is called a state predicate. Operators are
functions that operate on a set of parameters.

Agents are divided in sets according to their roles. Hence, checking if an agent
plays a given role is the same as checking its inclusion in the respective set. Agents
keep their state in variables indexed by their names. In the following specification,
for example, the action FlipIfZero is enabled for an agent a of type flipper that has
its variable var[a] equal to 0. If the action is executed, var[a] is flipped to 1.

Most keywords that we use have obvious meanings. For example, the If(a,b,c)
operator defined above evaluates to b if a is true and to ¢ otherwise. Another exam-
ple is the pair LET and 1N, which specifies the scope of a definition. In the definition
of SumSeq(seq) above, for example, Sum is defined as a recursive function that iter-
ates over the elements of a sequence summing them, but only inside SumSeq. For

1.5 System Model 7

Algorithm 1 Notation example.
FlipIfZero(a) =
pre-conditions: . a € flipper
- var[a] =0

actions: - var[a] « 1
If(a,b,c) £ IF q THEN b ELSE ¢
SumSeq(seq) =
LET Sum(i) = 1F i = O THEN seq[i] ELSE seq[i] + Sum(i— 1)

IN Sum(Len(seq))

. A
RandiInt(min,max) = CHOOSE i :4¢ € IAmin < i < mazx

the sake of simplicity, we collapse nested LET IN pairs into a single one and let each
definition be in the scope of the next ones.

We represent sequences as tuples. We denote by LEN(s) the number of elements
of sequence s and by s[i] the i-th element of s. The sequence () is the empty
sequence and (a, b, ¢) is the sequence of elements a, b and ¢, in this order. When
comparing sequences, the symbol “_” matches any element. For example, (a, b) =
(-, b) and (_, b) = (¢, b) even if ¢ # a.

The cHOOSE v : C' operator is used to select some value v that satisfies condition
C. In the definition of RandInt, for example, cHOOSE is used to select a random
integer between the min and maz values.

1.5 System Model

A distributed system is composed of a set of agents with well defined roles that
cooperate to achieve a common goal. In practice, an agent can be implemented
by a process or collection of them, by a processor, or any computation enabled
entity. Moreover, any single entity that implements one agent could also implement
multiple of them. Reasoning in terms of agents allows us to specify problems and
algorithms more concisely and in terms of heterogeneous agents.

Distributed systems can be classified in different axis according to the way agents
exchange information, the way they fail and recover, and the relative speeds at
which they perform computation. In this work we address asynchronous distributed
systems in which agents can crash and recover, and use unreliable communication
channels to exchange messages.

In asynchronous distributed systems there are no bounds on the time it takes an
agent to execute any action or for a message to be transmitted. We show that if

8 Introduction

such bounds exist, then the protocols we present in this thesis ensure some liveness
properties, if the number of failures can be limited in time. Our liveness proofs
require the bounds to exist but do not require them to be known by any agent.

Even though we assume that agents may recover, they are not obliged to do so
once they have failed. For simplicity, an agent is considered to be nonfaulty iff it
never fails. Agents are assumed to have access to local stable storage which they
can use to keep their state in between failures. State not kept in stable storage is
reset after a crash. Lastly, we assume that agents do not execute any arbitrary step,
i.e., we do not consider byzantine failures.

Although channels are unreliable, we assume that if agents keep retransmitting
their messages, then they eventually succeed in communicating with each other. We
also assume that messages are not duplicated and cannot be undetectably corrupted.

1.6 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 we present our
wab based consensus protocols, namely B*-Consensus and R*-Consensus, in Sec-
tion 2.2. Also in Chapter 2, we present our multicoordinated consensus algorithm,
in Section 2.3. In Chapter 3 we focus on the generalized consensus problem. In
specific, in Section 3.4 we present our multicoordinated generalized consensus pro-
tocol, Multicoordinated Paxos. In Section 3.5 we show how to instantiate Multico-
ordinated Paxos to solve the generic broadcast problem. In Chapter 4 we deal with
agreement among agents organized in groups and present our basic and extended
protocols for such a scenario. We present our last contribution, the log service spec-
ification and implementations, in Chapter 5. Finally, in Chapter 6, we conclude this
thesis and point some directions for future works.

Chapter 2

Multicoordinated Consensus

2.1 Consensus and the FLP Impossibility Result

Distributed problems and algorithms are commonly described in terms of a task to
be attained by homogeneous agents. The standard specification of the consensus
problem, for example, states that “a set of agents must eventually agree on a value,
in spite of a maximum number of failures”. As a result, algorithms for such prob-
lems are also given in terms of homogeneous agents with similar behavior. Because
processes play different roles in real systems, we use a different approach and spec-
ify problems and algorithms in terms of the roles which agents play. For example, in
a client/server architecture, we refer to client agents and server agents, or to sender
and receiver in a mailing system.

In the case of consensus, we use three kinds of agents: proposer, learner, and
acceptor. Because consensus subsumes many agreement problems, the same sets
of agents may also make sense it their specifications and, hence, we will adopt the
same terminology. To the best of our knowledge, specifications based on roles was
introduced by Lamport [1.

In the consensus problem, agents must agree on a single value out of a given
set of proposals. Proposer agents issue proposals out of which one will become
the decision. Once a decision is reached, learners must become aware of its value.
In the context of a common distributed application, state machine replication, pro-
posers can be thought of as clients issuing commands and learners as the application
servers that execute the decided commands. For this reason, we interchangeably re-
fer to proposals also as commands. Clients might also be learners to know whether
their issued commands were accepted by the system to be executed.

Formally, the safety requirements of consensus are three [IE

Nontriviality: Any value learned must have been proposed.

Stability: A learner can learn at most one value.

10 Multicoordinated Consensus

Consistency: Two different learners cannot learn different values.

While the safety requirements are stated in terms of proposers and learners, the
liveness requirement is stated over the set of acceptors. This happens because, as we
pointed out, proposer and learner roles are associated with clients of applications,
and it would be unreasonable requiring them not to fail. Acceptors, conversely, are
part of the application infrastructure, and it is more reasonable to make reliability
assumptions about them. We call a quorum any finite set of acceptors that is large
enough not to forbid liveness and define the liveness requirement of consensus as
follows:

Liveness: For any proposer p and learner [, if p, [, and a quorum () of acceptors
are nonfaulty and p proposes a value, then [eventually learns some value.

Under the assumed asynchronous crash-recovery model, it is well known that
no fault-tolerant consensus algorithm can ensure termination in the presence of
failures []. Phrased in terms of acceptors, this result implies that
quorums must equal the set of all acceptors. Hence, algorithms must make extra
assumptions about the system to ensure liveness if they must be fault-tolerant.

2.1.1 Randomization and Spontaneous Ordering

One possible way of circumventing the impossibility result is through the use of
randomization. The algorithm of Bracha and Toueg [], for
example, rely on the fact that, if agents keep exchanging messages in rounds, then
there is a non-zero probability that they will all eventually receive the same set of
messages in some round. The authors have called this property fair scheduling.

The algorithms of Rabin [] and Ben-Or [] employ ran-
domization in a different way. In their algorithms, if agents have no reason to opt
for some proposal or another in some round, then they use a random bit generator
to chose one. Given that there is a non zero probability that all chose the same
random bit, agreement is reached with probability 1.

Pedone et al. [] later replaced the selection based on the
random bit generator used by Rabin [] and Ben-Or [] for
a selection based on the order in which messages are received. This is possible if,
for every round, there is a non zero probability that messages will be received in the
same order. These properties, somehow related to fair scheduling, are abstracted by
weak ordering oracles []. In specific, the algorithms of Pedone
etal. [], namely B-Consensus and R-Consensus in reference to
Ben-Or and Rabin, use the weak atomic broadcast (WAB) oracle, which ensures that
if processes keep exchanging broadcast messages then, in some rounds, the first

2.1 Consensus and the FLP Impossibility Result 11

message received by all running agents is the same. In the same work, the authors
show that, with high probability, Ethernet broadcast satisfies the WAB specification.

WAB based protocols are interesting from a practical perspective since they do
not make any synchrony assumption. Nonetheless, B-Consensus and R-Consensus
are of more theoretical than practical interest for their assumed failure and com-
munication models: crash-stop and reliable links. From a pragmatic perspective,
agents should be capable of reintegrating the system after a crash and tolerate mes-
sage losses, being able to can make better use of highly-efficient communication
means (e.g., UDP messages).

Crash-Recovery WAB-Based Consensus

We have extended the protocols of Pedone et al. [] to the crash-
recovery model with fairly lossy channels. Moreover, we defined these extended
protocols using roles and relaxed the constraint that all agents run the same proto-
col as in the original algorithms []. These protocols, which
we have named B*-Consnesus and R*-Consensus in reference to the algorithms in
which they were inspired, are the first contribution of this chapter.

2.1.2 Synchronism and Failure Detection

Several works have considered circumventing the impossibility of solving consen-
sus by assuming a partially synchronous model. Dolev et al. []
and Dwork et al. [] have studied, classified, and determined
minimal synchrony assumptions needed to solve consensus. Christian and Fetzer
[] have shown that several synchronism assumptions are
realistic to some distributed systems.

Chandra and Toueg [] introduced the concept of un-
reliable failure detectors, or UFD, which encapsulate the synchrony assumptions
needed to solve consensus as abstract properties. These oracles provide possibly
wrong information about the failures of agents. The weakest UFD that can be used
to solve consensus, O# [], ensures two properties:

Eventual Weak Completeness all agents that permanently crash are eventually
suspected by a nonfaulty agent;

Eventual Weak Accuracy eventually, at least one nonfaulty agent will stop being
suspected by the other nonfaulty agents.

Another interesting failure detection abstraction is the €2 leader election oracle,
introduced and shown equivalent to &% by Chandra et al. [1.
Briefly, Q ensures that nonfaulty agents eventually agree on the identity of some

12 Multicoordinated Consensus

nonfaulty agent, the leader. Failure detectors have been used to solve consensus
in crash-stop [, , ,
,], in crash-recovery [,
, ,], and byzantine settings
[: , : 1.
In each of these algorithms, computation progresses as a sequence of rounds,
each of which is managed by a coordinator agent. The coordinators are the only
agents that send proposals to acceptors to get them decided; proposers resort to
coordinators to have their proposals considered. When a new round is started,
its coordinator must determine possibly previously decided values and use such a
value, if existent, in the new round. Moreover, a new round must prevent previous
ones from deciding if they have not done so yet. Hence, if rounds are indiscrimi-
nately started, no one will succeed in deciding any value. To avoid such a scenario,
a leader coordinator is selected at a time to start new rounds using a leader election
oracle, like Q. Because failure detectors can make mistakes, rounds may be started
even in absence of failures, what can prevent progress unless these mistakes cease
to happen.

2.1.3 Awvailability Issues of Leader Based Protocols

A proposal issued by the leader takes two steps to be decided and learned, in the
best scenario. One step to be propagated to the acceptors and one more from the
acceptors to the learners. From the point of view of regular proposers, one step more
is required to send their proposals to the leader. Hence, the leader becomes a single
point of failure for every round. When it fails, its failure must be detected, a new
leader must be elected, and a new round must be started. As we mentioned before,
starting a round the new leader to synchronize with acceptors to block previously
started rounds; while this synchronization is done, no decision can be reached.

Fast Paxos [] extends the leader-based Paxos [1,
mentioned above, to allow proposers send their proposals directly to acceptors in
some rounds, reducing in one step the latency of the protocol in synchronous pe-
riods of the system and in absence of failures. The price for these fast rounds, as
opposed to the classic rounds in the original protocol, is the possibility of different
proposals being accepted in the same round; we call this situation a collision. Col-
lisions have two bad effects: first, they may force the execution of a new round,
with all the overhead of starting it, even in the absence of failures; second, the sim-
ple possibility of collisions forces the leaders to synchronize with more acceptors in
starting each round and, therefore, fast rounds are less resilient. An execution of
Fast Paxos with only fast rounds is equivalent to an execution of the R*-Consensus
protocol [].

2.2 WAB-Based Consensus 13

Multicoordinated Rounds

We have introduced a multicoordinated type of rounds that minimize the depen-
dence on the coordinator and the availability problems resulting of this depen-
dence [,]. Multicoordinated rounds
have multiple coordinators, to which proposers send their proposals in parallel. As
in the original Paxos protocol, coordinators forward the proposals to acceptors; ac-
ceptors, however, only take into consideration proposals forwarded by a quorum of
the round coordinators. By requiring these coordinator quorums to intersect, the
protocol ensures that no two different values will be considered on the same round
and, hence, no collision happens on the acceptors. Collisions, however, may occur
at the coordinators if different proposals are sent in parallel. These collisions are in-
herently less expensive than collisions on the acceptors in that they can be handled
without any stable storage access. We further discuss this aspect of multicoordinated
rounds in Section 3.4.4.

As with fast rounds and R*-Consensus, multicoordinated rounds and the B*-
Consensus protocol are somewhat equivalent. Our multicoordinated protocol, how-
ever, extends Fast Paxos to have all three round types and allow coordinators to start
rounds of either type at any point during the execution. An implementation of the
protocol can harness this property to adapt to changes in the execution environment
at runtime. The multicoordinated consensus protocol is the second contribution of
this chapter.

2.2 WAB-Based Consensus

In this section we present the WAB-based consensus algorithms B*-Consensus and
R*-Consensus []. These protocols execute as a sequence of
rounds, identified by natural numbers. In each round, proposers can make any
number of proposals. Acceptors can accept only a single proposal per round, and
the goal of each round is to have a value accepted by a quorum of acceptors, in
which case we say that the value has been chosen. The algorithms ensure that if
a value is chosen at some round, then no other round will chose a different value.
Hence, a learner can safely learn a value that has been chosen. To ensure that no
two different values are chosen in any round, the algorithms require that quorums
intersect. This requirement is formalized by the following assumption.

Assumption 1 (Quorum Requirement) If () and R are quorums, then Q N R # 0.

In fact, any general algorithm for asynchronous consensus must satisfy a similar
requirement, as shown by the Accepting Lemma in []. A simple way

14 Multicoordinated Consensus

to satisfy this requirement is define quorums as any majority of the acceptors. We
use this approach in this section for its simplicity.

B*-Consensus explores Assumption 1 to terminate in three communication steps
in good runs. By making the following stronger assumption, R*-Consensus can
terminate in just two steps. The assumption is easily satisfied by defining quorums
with more than two thirds of the acceptors.

Assumption 2 (Simple Fast Quorum Requirement) If (), R, and S are quorums,
then QN RN S #0.

We will explain how Assumption 2 is used once we have presented the algorithm.
In fact, a relaxed version of it would be enough, but that would unnecessarily com-
plicate the algorithm. We relax the assumption later, when reviewing the Fast Paxos
protocol in Section 2.3.2, from which point on all algorithms will assume the relaxed
version.

Before presenting B*-Consensus and R*-Consensus, respectively in Sections 2.2.2
and 2.2.3, we describe Weak Ordering Oracles and, more specifically, the WAB ab-
straction used in both algorithms.

2.2.1 Weak Atomic Broadcast

Weak ordering oracles [| provide best-effort message ordering
guarantees, that is, they try to deliver messages in some total order to all processes
but cannot be trusted to always perform this task. A WAB, or Weak Atomic Broad-
cast, is a weak ordering oracle defined by the primitives w-broadcast(k, m) and
w-deliver(k, m), where k € N defines a w-broadcast instance and m is a message.
The invocation of “w-broadcast(k, m) to S” broadcasts message m in instance & to
the agents in S; w-deliver(k, m) w-delivers a message m w-broadcast in instance k.
WARB satisfies the following property:

WAB If agents w-broadcast in an infinite number of instances to the agents in some
set S, then for every instance k there is an instance &’ > £ in which

Fairness every nonfaulty agent in S w-delivers a message, and

Spontaneous Order the first message w-delivered in instance %’ is the same
for every agent that w-delivers a message in %'.

Consider, for example, the use of WAB depicted in Figure 2.1, where w-broadcast
and w-deliver are noted as wb and wd, respectively. The two agents depicted by
dashed lines w-broadcast messages to the other processes. No agent crashes and no
message is lost. In instance 1, message m1 is the first w-delivered by one of the three

2.2 WAB-Based Consensus 15

receivers; the spontaneous order property is clearly not satisfied in this instance. In
instance 2, however, the first message w-delivered by all receivers is the same, m4,
satisfying spontaneous ordering. Last, in instance 3, even though just one message
is w-broadcast and spontaneous ordering is attained, not all nonfaulty processes
deliver the message. As long as this bad scenario does not happen infinitely often in
the subsequent instances, the WAB properties may still be satisfied.

___Wwb(1,m1) wb(2,m3)

--------- S it > Sl ~Seluininitod - Sl niubeinieeinial taalialaiak N i i

TTwb{tm2y T wb@m4) " " T T T TTTTTTTT Wh{E,mey """ >

\ \

\

Figure 2.1: Spontaneous Order in WAB.

From a practical perspective, the behavior of IP-multicast in some local-area net-
works (e.g., Ethernet), under reasonable loads, matches the WAB specification. In
such environments, [P-multicast ensures that most broadcast messages are delivered
in the same order by all addressed nodes [1.

2.2.2 B*-Consensus

B*-Consensus (See Algorithm 2) has seven actions out of which the first three are
performed by all agents, the fourth is performed only by proposers, fifth and sixth
only by acceptors, and the last one by learners. Agents are divided in three sets,
according to their roles: acceptors, proposers, and learners, and checking whether an
agent may execute an action or not is performed by checking its inclusion into these
sets. Remember that proposers are assumed to be also learners.

The algorithm is defined in terms of four variables: rnd, prop, preAcc, and
acc. Even though some variables are particular to specific roles, to simplify the
presentation we let all agents have all variables. Variables not associated to an
agent will remain in its initial state throughout the execution of the protocol. We
explain the function of each variable as needed while explaining the actions.

Bootstrap and Recovery

Action Start(a) executes when a is started for the first time. It sets the data struc-
tures to their initial values. The second action, Recovery(a) executes upon recovery,

16 Multicoordinated Consensus

i.e., when the agent is recovering from a crash. Initialization and recovery are easily
discernible by using stable storage. Agents write to and read from stable storage
through Log and Retrieve functions. The other actions in the algorithm run in re-
sponse to the arrivals of messages. However, they only run after the agent has been
initialized or recovered.

For every agent a, variable rnd[a] has the highest-numbered round in which «
has taken part; initially, rnd[a] equals zero. If a is a proposer, prop[a] has the value
a has proposed in round rnd[a]; if a has not proposed any value, then prop[a] has
its initial value, none.

Algorithm 2 B*-Consensus
1: Common Actions:

]

Start(a) = < Run at boot, but not at recovery.
3. actions:

rnd[a] <0

prop[a] < none

preAccla] < none

w1 A

[

acc[a] < none

~

. Recover(a) = <4 Run at recovery, but not at boot.

®

9: actions:
102 Retrieve(rnd[a], prop[a], preAcc[a],acc[a])

1: Skip(a) =
12: pre-conditions:
13: received (-, ¢, rnd, ..., prop) or w-delivered (“first”, q, rnd, prop)

142 rnd[a] # rnd
15: actions:

162 1F rnd[a] > rnd THEN

17: send (“skip”, a, rnd[a], prop[a]) to ¢
188 IF rnd[a] < rnd THEN

19: rnd[a] <« rnd

20: prop[a] < prop

21: preAccla] < none

22: acc[a] < none

23 Proposer Actions:

A
4: Propose(a,v) =
25: pre-conditions:

N

2. @ € proposers
27: propla] =none
28: actions:

20 propla] «v

30: w-broadcast (“proposal”, a, rnd[a], prop[a]) to acceptors

2.2 WAB-Based Consensus 17

Skipping rounds

Rounds are started in sequence; only when a learner sees the end of a round, a new
one is started. If an agent has been down for some time or is too slow, it might
be delayed in the round progression. When an agent « in round rnd[a] receives a
message sent in a round rnd > rnd[a], it immediately jumps to rnd skipping rounds
rnd[a]+1...rnd—1, rapidly catching up with the more advanced agents. However,
not every value can be proposed in every round, an agent skipping rounds must
pick a value that is proposable in this new round. After a round in which a value
is decided, for example, only this value can be proposed. Only agents that finished
round rnd — 1 initially know which values can be proposed in round rnd. Hence,
processes skipping round rnd — 1 to rnd must learn from the processes already in r
about which values are valid proposals in r. In the algorithm, each message carries
a proposal valid in the round in which it was sent, so that other agents can use it to
skip round (this is the last field of each message).

The actual round skipping is performed by action Skip in the algorithm. This
action runs before the other actions have also been triggered by the receipt of
messages. This way, the process is able to jump to a higher round and then use
the message to proceed in the round. Although not specified to simplify the algo-
rithm, this action runs only once for every message received. The algorithms in
[] can also skip rounds, but the procedure is considerably more
complicated than the one we present.

Proposing a Value

Proposers propose a value by executing the fourth action. Due to message losses and
process crashes, a consensus instance may not terminate in the first attempt, and
may have to be retried. At any time, proposers can retry a consensus instance if they
believe that the previous attempt has failed; consistency is kept even if the previous
attempt is still running. Since we assume that proposers are also learners, they are
able to learn that a round of the algorithm has terminated. So, if a proposer does
not learn the decision of the consensus it has initiated after some time, it re-starts
its execution by proposing in its current round.

Accepting a Proposal

Acceptors in B*-Consensus accept proposed values in two steps. First, the value is
pre-accepted and then exchanged and compared with pre-accepted values of other
acceptors. Only then a value may be accepted. Actions PreAccept and Accept show
these two steps. Variables preAcc and acc store the acceptors’ currently pre-accepted
and accepted values, respectively.

18 Multicoordinated Consensus

Algorithm 2 B*-Consensus(continued)
11 Acceptor Actions:

w

s2: PreAccept(a) =
33: pre-conditions:

34: a € acceptors
35: w-delivered (“proposal”,_, rnd[a], prop)
s6: preAccla] =none

s7: actions:

38: preAcc[a] < prop

s9: propla] < prop

40: Log(preAcc[a],rnd[a],prop[al)

41: send (“pre-accepted”, a, rnd[a], preAcc[a), prop) to acceptors

2 Accept(a) =

431 pre-conditions:

44: a € acceptors

45: Vge Q,|Q|=[(n+1)/2], a received (“pre-accepted”, q, rnd[a], preAcc, prop)
46: actions:

47: LET M ={(“pre-accepted”, ¢, rnd[a], preAcc, prop): ¢ € Q}

48: IN

49: IFVm e M : m= (“pre-accepted”,_, rnd[a], preAcc,_)

50: THEN acc[a] < preAcc < Accepted preAcc.
s1: ELSE accla] « T < Did not accept anything.
52: propla] < prop

53: log (acclal, rnd[a], prop)

541 send (“accepted”, a, rnd[a], acc[a], prop[a]) to learners

ss: Learner Actions:

se: Learn(a) =

s7. pre-conditions:

58: a € learners

59: Vqge Q,|Q|=[(n+1)/2], a received (“accepted”, ¢, rnd[a], acc,-)
60: actions:

61: LET M ={(“accepted”, ¢, rnd[a], acc,_): ¢ € Q}

62: IN

63: IF Vm € M : m = (“accepted”, ¢, rnda[a], acc,_) and acc # T
64: THEN decide acc

65: IF 3(“accepted”, ¢, rnd[a], acc,_) € M : acc # T

66: THEN prop[a] < acc

67: rnd[a] « rnd[a] + 1

Acceptors pre-accept values when they first w-deliver a “proposal” message in
their current round. Remember that agents may update their current rounds just
before w-delivering, through the Skip action. On pre-accepting a proposal prop
received in a message (“proposal”, q,nd, prop), an acceptor a sets preAcc[a] to

2.2 WAB-Based Consensus 19

prop and logs it along with rnd[a] and some proposal valid for round rnd[a], as for
example the proposal just received. These values are used to recover the process
in case of a crash. In Section 3.4.5 we show how this stable storage access can be
avoided.

After pre-accepting a value, acceptors exchange these values with one another in
“pre-accepted” messages. The goal is to determine if enough processes have pre-
accepted the same proposal. Each acceptor a collects [(n + 1)/2] pre-acceptances,
including its own, where n is the number of acceptors in the system. This is shown
in action Accept. If all the [(n + 1)/2] pre-accepted values are equal to the same
value preAcc, then a accepts the value by setting acc[a] to preAcc. Otherwise, if
the values differ, a sets acc[a] to T to indicate that no value has been accepted
in the given round. The update of acc[a] is logged on stable storage as well as
rnd[a] and a valid proposal, as done with pre-acceptances. Finally, acceptors send
their accepted values or T, if they did not accept any value, to all learners using
“accepted” messages.

Learning the Decision

Once learners have received [(n + 1)/2] “accepted” messages, they execute action
Learn. The first step in the action is to check whether all received “accepted” mes-
sages carry the same accepted value acc. If that is the case, then acc has been chosen
as the decision and should be learned. The decision is also used as the proposal for
the next round. If no value has been decided, then learners look for any accepted
value v # T to be used as a proposal in the next round. If none is found, any
value is used. The learner then increments its round number so that its proposer
counterpart starts the new round.

2.2.3 R*-Consensus

R*-Consensus (See Algorithm 3) has a structure very similar to B*-Consensus. The
most notable difference is that acceptors do not pre-accept proposals and check
against each other. Hence, there is one fewer action in the algorithms as well as
one fewer variable, preAcc. In fact, except for the removal of preAcc, the first four
actions are the same as in B*-Consensus. We therefore omit the explanation of these
actions.

Accepting a Proposal

In the R*-Consensus algorithm, an acceptor a directly accepts the first proposal it
w-delivers in its current round. As in B*-Consensus, the accepted value is logged

20 Multicoordinated Consensus

Algorithm 3 R*-Consensus
1 Common Actions:
2 Start(a) = < Run at boot, but not at recovery.

actions:
rnd[a] < 0
prop[a] < none

NI)

3]

acc[a] « none

o)

~

. Recover(a) = < Run at recovery, but not at boot.
actions:
Retrieve(rnd[a], prop[a),acc[a])
10: Skip(a) =
11: pre-conditions:
12: received (-, ¢, rnd, ..., prop) or w-delivered (“first”, q, rnd, prop)
13: rnd[a] # rnd
14: actions:

o ®

15: 1F rnd[a] > rnd THEN

16: send (“skip”, a, rnd[a], prop[a]) to g
17: IF rnd[a] < rnd THEN

18: rnd[a] < rnd

19: prop[a] < prop

20: acc[a] < none

21: Proposer Actions:

A
22: Propose(a,v) =
23: pre-conditions:

24: a € proposers
2s: propla] =none
2. actions:

27: proplal < v

28: w-broadcast (“proposal”, a, rnd[a], prop[a]) to acceptors

2.2 WAB-Based Consensus 21

along with rnd[a] and prop[a], so that these values will not be forgotten in case
of a crash. Acceptors then send the accepted values to all learners in “accepted”
messages.

Learning the Decision

Instead of a simple majority of “accepted” messages as in B*-Consensus, learners in
R*-Consensus gather [(2n + 1)/3] messages for the same round as a precondition
to action Learn. As in the other algorithm, a value is learned (or decided) if all
received messages show the same value as accepted. If that is not the case, then
a new round is started. If more than half of the “accepted” messages indicate the
same value, then this value is chosen as the proposal for the next round and stored
in the prop variable. If no value satisfies such a condition, then any value can be
used as proposal. In any case, rnd[a] is incremented.

Algorithm 3 R*-Consensus (continued)
200 Acceptor Actions:

o: Accept(a) =
311 pre-conditions:

w

32: a € acceptors

33: w-delivered (“proposal”, g, rnd[a], prop)
34 acc[a] = none

35: actions:

s6: accl[a] « prop

37: propla] < prop

38: Log(accla],rnd[a],prop[a])

39: send (“accepted”, a,rnd[a], acc[a], prop) to learners

40: Learner Actions:

s: Learn(a) =

42: pre-conditions:

43 a € learners

44: Vge Q,|Q|=[(2n+1)/3], a received (“accepted”, ¢, rnd[a], acc, prop)
45 actions:

46: LET M ={(“accepted”, ¢, rnd[a], acc, prop): q € Q}

47: IN
48: IF Vm € M : m = (“accepted”,_, rnda[a], acc,-) THEN

49: decide acc

50: IF 30,4, ¢ for [(n+1)/3]m € M : m =(*accepted”, _, rnd[a], v,,4j,-) THEN
51 propla] <« vy,

522 rnd[a] < rnd[a] + 1

22 Multicoordinated Consensus

2.2.4 Correctness and Liveness

In this section we sketch the correctness and liveness proofs or R*-Consensus and
B*-Consensus. B*-Consensus and R*-Consensus are simplified versions of the Mul-
ticoordinated Consensus, presented in Section 2.3, and of Multicoordinated Paxos,
presented in Chapter 3. Hence, the formal proof of correctness and liveness for Mul-
ticoordinated Consensus and Multicoordinated Paxos, in the Appendix A, also serve
as formal proofs for B*-Consensus and R*-Consensus.

From the algorithms, B*-Consensus and R*-Consensus ensure the Nontriviality
criterium in the consensus specification since no value besides the proposals are
introduced in the algorithms. Consistency is ensured in B*-Consensus for the fol-
lowing reason:

* Due to Assumption 1, only a single value may be accepted in action Accept of
any round by all agents in some quorum.

* If some quorum of acceptors accept the same proposal v in the same round,
then every learner that executes Learn sees at least one “accepted” message
with v in B*-Consensus. Hence, every learner that increments its round num-
ber does so after setting v as the new proposal, and v becomes the only pro-
posable value in the next rounds.

* If there is a single value v proposed in some round, then all acceptors that
accept some value must accept v. Hence, by the end of the round, v will be
the only decided by any learner that decides, and the only proposal valid for
the next rounds.

For a similar reason, Consistency also holds for R*-Consensus. That is

* Due to Assumption 1, only a single value may be accepted in action Accept of
any round by all agents in some quorum.

* If some quorum of acceptor accepts the same proposal v in the same round,
then every learner that executes Learn sees at least n/3 + 1 in R*-Consensus,
due to Assumption 2. Hence, every learner that increments its round number
does so after setting v as the new proposal, and v becomes the only proposable
value in the next rounds.

* If there is a single value v proposed in some round, then all acceptors that
accept some value must accept v. Hence, by the end of the round, v will be
the only decided by any learner that decides, and the only proposal valid for
the next rounds.

2.3 Multi-Coordinated Consensus 23

The same reasoning implies the Stability property. That is, after deciding on
some value, each learner can only decide again if for the same value.

By the definition of the Liveness property, no algorithm can ensure progress
unless all acceptors in some quorum are nonfaulty. If this condition is satisfied and
actions are fairly executed (i.e., they are eventually executed if they are frequently
enabled.), then as soon as the WAB properties hold in some round r a value v will
be chosen. Once v is chosen, any learner that finishes r choses v as its new proposal
and any agents moving to a round ' > r only considers v as a valid proposal. Hence,
even if the WAB properties do not hold in rounds bigger than r, every learner that
decides in " decides for v.

2.3 Multi-Coordinated Consensus

The Paxos consensus protocol [,] is a well known
and largely studied leader based consensus protocol. When starting each round
of Paxos, the leader checks if any decision was or may still be decided in any pre-
viously started round. If this is the case, then the leader forwards this value to
be accepted by the acceptors in the new round. This inductively ensures that new
rounds are always in accordance with the decisions of previously started rounds.
Fast Paxos [] is an extension of Paxos in which the leader, after de-
termining that no value could have been decided in previous rounds, delegates to
the proposers the task of sending proposals directly to the acceptors. Hence, in Fast
Paxos, the leader can decide to switch back and forth from a classic Paxos round to
a Fast Paxos round. (Henceforth, we refer to Paxos and its rounds as Classic Paxos
and classic rounds.)

In the same way that Fast Paxos extends Classic Paxos with fast rounds, which
are roughly equivalent to R*-Consensus rounds, we can extend Fast Paxos with B*-
Consensus-like rounds. In doing so, we create rounds in which the task of the leader
is shared by multiple coordinators, which never write on disk and therefore can be
easily replaced by another coordinator. Moreover, these new rounds, which we call
multicoordinated, do not require larger acceptor quorums as Fast Paxos does. Hence,
we claim that our extended protocol provides greater availability than Fast Paxos.

The best way to explain our protocol is by starting with Classic Paxos and adding
support to fast rounds, obtaining Fast Paxos, and then multicoordinated rounds.
Hence, we start by explaining Classic Paxos.

2.3.1 Classic Paxos

The rounds of Paxos and Fast Paxos are identified by round numbers (sometimes also
called a ballot numbers [1) which are totally ordered by a relation <

24 Multicoordinated Consensus

and in an infinite number. Although there is a total order among round numbers,
the execution of rounds need not follow this order, and actions referring to different
rounds may even interleave. This is in opposition to our WAB-based consensus
protocols, in which a round ¢ is always followed by round ¢ 4+ 1 (although delayed
agents may skip some rounds). For now, we assume that round numbers correspond
to the set of natural numbers. In Section 3.4.5 we discuss another type of round
numbers and their interesting properties in Section 3.4.5.

We say that a value is chosen in a round r if a quorum of acceptors has accepted
the value in round r. Because the protocol assumes that Quorum Requirement
(Assumption 1, on page 13) is satisfied, it is ensured that only a single value can
be chosen in any round. In Classic Paxos, a round is divided into two phases: the
first phase serves to identify previously chosen values and the second phase tries
to get some value chosen in the current round. Each phase involves two actions:
Phasela, Phaselb, Phase2a, and Phase2b. Actions Phasela and Phase2a initiate each
phase, while the actions Phaselb and Phase2b may be seen as replies to the previous
actions.

To orchestrate round executions, Paxos assumes a set of coordinator processes,
besides proposers, acceptors, and learners. Every round has a single coordinator,
responsible for starting each phase of the round, by executing actions Phasela and
Phaselb.!

Two other actions complete the algorithm. The first, Propose, is executed by
proposers to propose a value. The second, Learn, is executed by learners to learn
the decision of a consensus instance.

Figure 2.2 presents the dependencies among actions in each round. It shows
that a learner [can only learn the decision of an instance after the execution of the
two phases of some round i. Besides, a learner [/ can only learn some value if some
proposer p has proposed it. Observe that the Propose action must happen before
the second phase, but not necessarily before the first phase. The importance of this
property will be explained later.

Propose(p,v)

Phasela(c,i) —> Phaseib(a,ij —> Phase2a(c,i) —> Phase2b(a,i) —> Learn(l)

Figure 2.2: Dependencies among actions of proposer p, coordinator ¢, acceptor a
and learner /, for some round :. — is the regular happens-before relation.

We now present an abridged version of the Classic Paxos specification along with
a description of each phase of the protocol. Actions are defined in terms of the set

'In the original protocol, coordinators were drawn from the set of acceptors, not a different set
of agents.

2.3 Multi-Coordinated Consensus 25

of variables listed below. The function of each variable becomes clear from the
explanation of the actions. A coordinator ¢ keeps the following variable:

crnd[c] The current round of ¢, which is initially O.
An acceptor a keeps three variables:

rnd[a] The current round of a, that is, the highest-numbered round « has heard of;
initially O.

vrnd[a] The round at which « has accepted the latest value, initially O.
vval[a] The value a has accepted at vrnd[a], initially none.
Each learner [keeps only the value it has learned so far.

learned[l] The value learned by I, initially none.

Proposing a Value

A proposer agent a proposes a value v by executing action Propose(a,v). The action
consists simply of sending a (“propose”, v) message to all coordinators.

Phase One

The coordinator ¢ of round i executes action Phasela(c,i) to start the phase one of
i. The action consists of ¢ sending a message (“1a”, ¢, i) to each acceptor a asking
a to take part in round 7.

After receipt of message (“1a”, ¢, i), acceptor a executes action Phaselb(a,i) to
join round . a executes the action only if i is greater than any other round « has
ever heard of, where a has heard of j if it already executed actions Phaselb(a,j)
or Phase2b(a,j). In this case, a sends an (“1b”, i, a,vrnd[a],vval[a]) message to c,
where vrnd[a] is the highest-numbered round in which « has accepted a value (or
the initial state, if no value has been accepted by a) and vval[a] is the value it
accepted in vrnd[a] (or an invalid value none, if no value has been accepted yet).
The pre-condition of this action ensures that after it is executed for round i, acceptor
a will not execute it for a round j such that ;7 < i. As we show in action Phase2b,
this action also prevents a from accepting a value for a round j lower than 7. This
is a guarantee to ¢ that a will not change its mind about the latest value accepted
in a round number lower than 1.

26 Multicoordinated Consensus

Algorithm 4 Classic Paxos
12 Proposer Actions:

. Propose(a,v) =
pre-conditions:
a € proposers
s: actions:
send (“propose”, v) to coordinators

A owoN

[

7. Phase One:
. Phasela(a,i) =
pre-conditions:

®

)

10: a is the coordinator of round
11 crndlal] <i

12: actions:

13: send (“1a”, a, i) to acceptors

14: Phaselb(a,i) =
15: pre-conditions:

162 a € acceptors

17: rnd[a] <i

188 received message (“1a”, ¢, i) from coordinator ¢
19: actions:

20: rnd[a] < i

21: send (“1b”, a, i, vrnd[a], vval[a]) to ¢

Phase Two

The second phase starts once the coordinator ¢ receives (“1b”, a, i, vrnd, vval) mes-
sages for the same round 7 from all acceptors « in a quorum () and executes action
Phase2a(c,1). In the action, ¢ sends message (“2a”, ¢, i, val) to the acceptors, where
val is c’s selected proposal defined as follows. If no “1b” message informed of a
previously accepted value, then c is free to select val among the proposals received
directly from proposers. Otherwise, ¢ must pick a value that has been or might be
chosen in a previous round to make sure that no two different values will end up
being chosen. This procedure ensures that if a value is chosen in round j, then no
acceptor will ever accept a value other than v in a round bigger than j. Since all co-
ordinators have done the same for previously started rounds, ¢ must consider only
the “1b” messages with the highest value of vrnd. Moreover, since Paxos ensures
that no two acceptors can accept different values at the same round, all such mes-
sages are guaranteed to have the same value vval, which ¢ picks up. Hereinafter we
use pick a value when referring to the proposal selection performed by coordinator
¢ during a Phase2a action, and say that a value is pickable in round i if no other
value was or can still be chosen at any round j < 7. In Algorithm 4, the picking of a
value is executed by function PickValue(c, Q, i).

2.3 Multi-Coordinated Consensus 27

The second part of phase two of round i is executed by the acceptors in reply
to the (“2a”, ¢, i, val) message received from c. An acceptor a accepts the proposal
val from c if it has not heard of a round j greater than i. The acceptor a then
sends a message (“2b”, a, i, val) to all learners. As we can notice, the fact that an
acceptor only accepts values at round 7 sent by the coordinator of 7 in a phase “2a”
message (which is the same sent to all acceptors) ensures that no two acceptors
accept different values at the same round.

Learning a Value

If a learner [receives (“2b”, a,i,val) from each acceptor ¢ in a quorum, then it
knows that val has been chosen and can be safely learnt. That is, val has been
accepted by a quorum of acceptors and any coordinator that starts a round bigger
than ¢ will pick val as its proposal. [learns val by storing it on its learned[l] variable.

Ensuring Liveness

As described in the definition of Phaselb, executing that action for a given round
prevents the same acceptor from executing action Phase2b for any smaller round
(See Figure 2.2.). If different coordinators keep starting new rounds, it may happen
that acceptors continuously execute Phaselb for the new rounds before executing
Phase2b for the smaller rounds, and no value is ever chosen. To ensure liveness, a
single coordinator must be entitled to start new rounds; we call such coordinator
the leader. When there is just one agent in the system that believes itself to be the
leader, then it will be able to start a round that is high enough to overcome all
previously started rounds and make it succeed. However, having a single leader is
just a liveness condition; safety is never violated no matter how many coordinators
incorrectly believe themselves to be the leader. (See the complete description of
Paxos for a formal proof of its liveness guarantees [1)

Skipping Phase One

Since a coordinator sends the value to be accepted only at the beginning of phase
2, the first phase of the algorithm can be executed before receiving any proposal.
On a real application, probably many consensus instances will be needed, and the
leader can execute phase 1 a priori for all consensus instances. Thus, the amortized
latency for solving each instance becomes only three messages steps if there are no
failures and no other coordinator interferes by starting a higher-numbered round:
one step for the proposal to reach the leader and two more for the second phase of
the leader’s current round.

28 Multicoordinated Consensus

Algorithm 4 Classic Paxos (Continued)
22: Phase Two:

23: Phase2a(a,i) =

24: pre-conditions:

258 a is the coordinator of round 3

26: cnd[a] <i

27: 3Q : Q is a quorum and Yac € Q, a received (“1b”, ac, i, rnd, val)
28: actions:

29: crnd[a] < i

30: cval[a] « PickValue(c, Q,1)
31 send (“2a”, a, crnd[a], PickValue(c, Q)) to acceptors
. o A
32: PickValue(c,Q,i) =
A 1 [13 ” -
33: LET v = CHOOSE val : ¢ received (“1b”, ac, i, k, val) from some ac € Q :
Yac' € Q,m' =(“1b”, ac’,i,k’,_) c received from ac’: k' <k
3. IN IF v # none THEN val ELSE CHOOSE v: ¢ received (“proposal”, v) from some proposer
o A
35: Phase2b(a,i) =
36: pre-conditions:

37: a € acceptors

38: rnd[a] <i

39: ynd[a] <i

40: received message (“2a”, ¢, 1, val) from coordinator c
41: actions:

42: rnd[a] < i

43: vrnd[a] <« i

44: wal[a] < val

45: send (“2b”, a, 1, val) to learners

A
46: Learn(a) =
47 pre-conditions:

48: a € learners

49: 3Q : Q is a quorum and Yac € Q, a received (“2b”, ac, i, val)
so: actions:

518 learned[a] < val

2.3.2 Fast Paxos

Fast Paxos [] is an extension of the classic algorithm in which ac-
ceptors may accept proposals directly from proposers in some rounds, reducing the
latency of reaching a decision in one communication step in good scenarios. There
are two main differences between Fast and Classic Paxos that enact this shortcut.
First, in Fast Paxos, each round has its own set of quorums; we call a quorum for
round 7 an i-quorum. The reason for this is made clear later in this section (see
Assumption 3, on page 31). Second, Fast Paxos has two sorts of round: classic and
fast. Classic rounds have the same structure as rounds in Classic Paxos. Fast rounds

2.3 Multi-Coordinated Consensus 29

share the first phase with classic rounds, but their second phase differs slightly as
we now explain.

Picking a Value in Fast Rounds

In a fast round ¢, after receiving the “1b” messages from an ¢-quorum, if the coor-
dinator is free to pick any value, it can delegate this task to acceptors; it does so by
picking as placeholder the special value Any and sending it in a “2a” message to the
acceptors.

After receiving the “2a” message with the value Any, acceptor a waits for a
message (“propose”, v), in case it has not received one yet, and behaves as if it had
received a message (“2a”, ¢, i, v) from the coordinator ¢ of round i. Hence, for Fast
Paxos to work properly, proposers should send their “propose” messages to both
coordinators and acceptors.

In Fast Paxos, acceptors are still bound to accept just one value per round but,
differently from Classic Paxos, different acceptors can accept different values in the
same fast round. Hence, to ensure the property that if a value v is chosen at round
i, then no acceptor will ever accept a value different from v at any round j such
that 7 > 4, we must revisit the rule used by the coordinator of round i to find
pickable values after receiving the “1b” messages from an i-quorum. That is, we
must redefine the PickValue function.

Ensuring Safety with Fast Rounds

To understand how a coordinator picks a value in a fast round i, consider a run
of the algorithm in which the coordinator of i has just received the “1b” messages
for 7 from an i-quorum (). There are three cases to analyze. First, if none of the
received messages has a valid proposal in the val field, then no value has been or
might be chosen at lower-numbered rounds, since there is no quorum that could
have chosen such a value that does not intersect with (). Therefore, any proposed
value is pickable and it is up to ¢ to decide whether to pick one or to let proposers
propose directly.

If the first case does not apply, then let & be the greatest value for rnd received
amongst the phase “1b” messages. If all messages in which rnd = k report the same
value v as val, it might be the case that v was or will be chosen at a round j < &
Because the coordinator of k£ was also aware of this fact, v is the only value that
it could have sent to the acceptors. Moreover, since any k-quorum must intersect
() and acceptors ¢ in () are sure to have executed action Phaselb(a,i) for round i
(« > k), no value different from v can be chosen at k. Therefore, the coordinator
can safely pick v in 7.

30 Multicoordinated Consensus

Now consider the third case, in which more than one value has been reported
in the phase “1b” messages with rnd = k (k still being the greatest value for vrnd
reported in the “1b” messages). This implies that the coordinator of k£ could pick
any value and, hence, no value was chosen or will be chosen at a round lower than
k. As a result, the coordinator must only figure out which of the values has been or
might yet be chosen in k. There are three subcases to consider with respect to the
“1b” messages received with rnd = k:

1. There is no value v and k-quorum R such that, for every acceptor a in) N R,
a message (“1b”, a, i, k, v) was received from a. This implies that no value v
has been or might be chosen at k£ since no k-quorum has even partially agreed
on a value v at k. In this case, any proposed value is pickable.

2. There is only one value v such that, for some k-quorum R, a message of the
form (“1b”, a, i, k, v) has been received from every acceptor a in () N R. This
means that only value v has been or might be chosen at £ depending on what
the other acceptors have accepted or might still accept. In this case, only v is
pickable.

3. There are two different values v and w and two k-quorums R and S such that,
for every acceptor a in () N R, a message (“1b”, a, i, k, v) was received from
a, and, for every acceptor b in () N S, a message (“1b”, b, i, k, w) was received
from b. This means that either one of the values has been chosen or might
still be chosen depending on what the other acceptors in R and S accept
at k. By the quorum requirement, R and S have a non-empty intersection,
which prevents both values from being chosen, but if this intersection does
not intersects (), then ¢’s coordinator cannot decide which value is pickable.
This case is depicted by Figure 2.3,

Figure 2.3: () is an i-quorum, R and S are k-quorums, and v and w are the values
accepted by acceptorsin @ N S and @ N R.

The way to avoid the third case is by strengthening the assumption made on the
intersection of quorums and making sure that the intersection of any two quorums

2.3 Multi-Coordinated Consensus 31

R and S as shown in case 3 above also intersects (). If this is ensured, the situation
discussed in case 3 will never happen. The Simple Quorum Requirement in As-
sumption 2 would suffice here, but as we mentioned when defining it, it is stronger
than really needed. The reason is that it forces any three quorums to intersect. It
was reasonable to make this requirement for R*-Consensus, since it only has “fast”
rounds. In Fast Paxos, which has classic and fast rounds, the following requirement
is enough:

Assumption 3 (Fast Quorum Requirement) For any rounds i and j:
* If Q) is an i-quorum and S is a j-quorum, then Q N S # 0.

* If Q is an i-quorum, R and S are j-quorums, and j is fast, then QN RN .S # 0.

In the general case, this stronger assumption requires bigger quorums. If every
set of n— F acceptors is a quorum for a fast round (fast quorum, for short) and every
set of n — F' acceptors is a quorum for a classic round (classic quorum), where n is
the total number of acceptors, then n must be greater than 2+ F' as well as greater
than 2F'. These constraints are achieved, for example, if every set of [%"J +1 accep-
tors is a fast and classic quorum. If classic quorums are defined to be any majority of

acceptors, fast quorums must be as big as [BT”J +1 acceptors. It has been shown that

any asynchronous consensus protocol that allows a decision to be reached in two
communication steps must satisfy similar quorum requirements []
(Fast Learning Theorem).

Collisions and Collision Recovery

If two different values v and w are proposed in the same fast round ¢, it may be
that none gets chosen, even in the absence of failures or suspicions, due to colli-
sions []. A collision happens when the acceptors of a fast quorum
accept different values. In pessimistic scenarios, collisions will prevent any value
from being chosen in a fast round. If part of the acceptors accept v, part accept
w, and the remaining never accept anything. There are three ways to break the tie
and recover from a collision, and all reduce to executing a higher-numbered round.
However, depending on how this new round is chosen, latency can be reduced con-
siderably.

Let us assume a collision has happened at round i. The simplest approach has
i’s coordinator ¢ to monitor the acceptors’ phase “2b” messages and start a new
round from the beginning after it learns the collision has happened. This approach
is expensive as it takes four communication steps to recover.

32 Multicoordinated Consensus

Assume now that numbers are discrete, that is, for any round : it is possible to
determine the round [/ such that there is no round j, ¢« < j < [. For simplicity, we
refer to the round subsequent to i simply as ¢+ 1. If, besides being the coordinator of
i, c is also the coordinator of ¢ + 1, then ¢ can exploit the fact that the information
in “2b” messages sent for round ¢ is essentially the same that would be sent in
“1b” messages for round ¢ + 1 if ¢ sends “la” message for i. Hence, ¢ may skip
the first phase and proceed directly to the second phase of round i + 1, incurring
only two communication steps for collision recovery. This second approach is called
coordinated recovery.

As an extension of coordinated recovery, if round 7’s “2b” messages are also sent
to the set of acceptors, they can try to guess the coordinator’s “2a” message for
round i + 1. They do that by interpreting these “2b” messages for round i as “1b”
messages for round ¢ + 1 and applying the same algorithm that the coordinator
uses to pick a value for a phase “2a” message; as seen before, this algorithm is
guaranteed to return a pickable value. The acceptors then simulate the reception of
a “2a” message with such a value. The advantage of this method is that it takes only
one communication step to recover from collisions. However, because there is no
guarantee that the acceptors will pick the same value, round 7 + 1 is required to be
fast, allowing acceptors to accept different values but risking in a new conflict. This
third approach is called uncoordinated recovery. As explained in [1,
some strategies can be used to try to make them accept the same value.

Observe that a run of Fast Paxos with only fast rounds that succeed each other
by uncoordinated recovery is equivalent to running the R*-Consensus algorithm.

2.3.3 Multi-Coordinated Rounds and Coord-Quorums

While the expected latency of Classic Paxos is just three communication steps, in
good runs, this number jumps when the coordinator must be replaced. Although at
a first glance, the costs in replacing it consists only in the two communication steps
needed to execute the first phase of another round of the protocol, this is not neces-
sarily true. In large distributed systems, it is likely that just some of the nodes take
part in the failure detection to minimize its cost. Moreover, efforts have been made
to make failure detection as quiescent as possible []. These and
other factors may impact on how fast a new leader can be elected and new deci-
sions can be reached. Therefore, relying on a leader can significantly impact on the
availability of a system implementing this approach. In the Chubby lock service, for
example, nodes run Classic Paxos to agree on leases to other services; even though
all nodes running the service are inside the same cluster, failures of the leader ac-
count for most of the system downtime [].

On the one hand, the fast rounds of Fast Paxos seem to solve the problem: they

2.3 Multi-Coordinated Consensus 33

do not depend on a leader during normal execution and even reduce the expected
latency to learn a decision in good runs in one communication step. On the other
hand, their stricter requirements on quorum sizes may limit the overall resilience of
the system and hurt performance. Remember that with fast rounds the number of
acceptors must be bigger than 2F + F' (c.f. Assumption 3).

We propose a different approach to minimize the dependency on the leader:
to extend classic rounds to have multiple coordinators, making them more reliable
while maintaining their latency and the same acceptor quorum requirements.

This multicoordination approach stems from the realization that the tasks of pre-
accepting and of accepting values in the B*-Consensus protocol, presented in Sec-
tion 2.2, serve very different purposes. Pre-acceptances are meant to filter proposals
only, but not choosing them; choosing happens at the acceptance stage. These two
tasks are exactly what coordinators and acceptors do in Classic Paxos.

In the next sections we present a multicoordinated consensus protocol that ex-
tents the Fast Paxos protocol with multi-coordinated rounds. The resulting protocol
can switch from classic, to fast, to multi-coordinated rounds to adapt to changes in
the environment. Hence, our protocol can be seen as a synergy of B*-Consensus and
Fast Paxos.

In Chapter 3 we present a similar multi-mode protocol that solves the more
complex Generalized Consensus Problem, in which processes agree not on a single
value but on a continuously growing sequence of them, and give an instantiation of
the protocol to solve the Generic Broadcast problem [1.

Coordinator Quorums

In our protocol, rounds are still classified as in Fast Paxos, according to their min-
imum latency: classic rounds, if they require three messages steps to finish, or as
fast rounds, if they may finish in two steps. However, in our extended protocol we
relax the assumption that each round has a single coordinator. All coordinators of
a round perform the same tasks. We divide the set of coordinators in coordinator
quorums for rounds 4, or i-coordquorums for short. We say that ¢ is a coordinator
of round : if it belongs to any ¢-coordquorum.

We change the behavior of the acceptors to accept a value v in a round 7 only if
such value has been received from all coordinators in some ¢-coordquorum. Hence,
the original Classic Paxos rounds, with a single coordinator, are simply multicoor-
dinated rounds with a single one-element quorum of coordinators. Moreover, as
discussed in Sections 2.3.1 and 2.3.2, in Classic and Fast Paxos, coordinators rely
only on one value being accepted in any classic round when they pick values. This
invariant must also be kept in our multicoordinated rounds in spite of coordinators
being allowed to send different values to be accepted by acceptors. We do so by re-
quiring all coordinator quorums of a round to intersect, as stated by the assumption

34 Multicoordinated Consensus

below.

Assumption 4 (Coord-quorum requirement) For any two quorums of coordinators
P and @ for the same classic round, P N Q # 0.

Fast rounds can have multiple coordinators and Assumption 4 would place no
restriction upon them. However, since fast rounds are meant to avoid coordinators
during normal execution, we see no reason to have something different from a
single coordinator for them except in some very specific scenarios which we discuss
in Section 3.4.4.

2.3.4 Algorithm

We now present the complete multicoordinated consensus algorithm. It is defined in
terms of the same variables as Fast Paxos, which we repeat below for completeness.
A coordinator ¢ keeps the following variable:

crnd[c] The current round of c. Initially O.
An acceptor a keeps three variables:

rnd[a] The current round of «, that is, the highest-numbered round « has heard of.
Initially O.

vrnd[a] The round at which « has accepted the latest value. Initially 0.
vval[a] The value « has accepted at vrnd[a]. Initially none.
Each learner [keeps only the value it has learned so far.

learned[l] The value learned by /. Initially none.

Proposing a Value

As in Fast Paxos, proposals are sent to both coordinators and acceptors to allow the
execution of fast rounds. To minimize communication overhead, proposals may be
initially sent only to a quorum of coordinators and a quorum of acceptors. Observe
that this is only possible if multiple rounds share the same coordquorums and accep-
tor quorums, otherwise proposers would not know where to send proposals, since
they are oblivious to rounds.

2.3 Multi-Coordinated Consensus 35

Phase One

In the multicoordinated consensus protocol, any coordinator ¢ of a round ¢ may
start the round by sending a (“1a”, ¢, i) message to the acceptors, asking them to
take part in round ¢. This happens in action Phasela(c,1).

In reply, an acceptor a executes Phaselb(a,i), as in the other Paxos protocols, if
it has not heard of any round bigger than i, as stated in the pre-conditions of the
action. In this case, a joins round ¢ by setting rnd[a] to i, and sends a message
(“1b”, a, i,vrnd[a],vval[a]) to all the coordinators of round 7, where vrnd[a] is the
highest-numbered round in which « has accepted a value, and vval[a] is the value
it accepted in vrnd[a]. If no value has been accepted by a yet, then vrnd[a] equals
its initial state and vval[a] equals an invalid proposal, none.

By the pre-condition that rnd[a] < a and because the action sets rnd[a] to ¢,
once executed for 7, this action can only execute again for a bigger round number.
Moreover, it also forbids the execution of action Phase2b for a round smaller than i.

Algorithm 5 Multicoordinated Consensus
11 Proposer Actions:

Propose(a,v) =

N

3. pre-conditions:

4 a € proposers

s: actions:

6: send (“propose”, v) to coordinators U acceptors
7. Phase One:

s: Phasela(a,i) =
o: pre-conditions:

10: a € [Ji-coordquorum

11 cnd[a] <i

12: actions:

138 send (“1a”, a, i) to acceptors

14: Phaselb(a,i) =
15: pre-conditions:

16: a € acceptors

17: rnd[a] < i

18: received message (“1a”, ¢, 1) from coordinator ¢
19: actions:

20: rnd[a] < i

21: send (“1b”, a, 1, vrnd[a], vval[a]) to ¢

36 Multicoordinated Consensus

Algorithm 5 Multicoordinated Consensus (Continued)
22: Phase Two:

2s: Phase2a(c,i) =

24: pre-conditions:

1 ¢ € | Ji-coordquorum

26: crnd[c] <i

27: 3@ : @ is a quorum and Ya € @, c received (“1b”, a, i, rnd, val)
28: actions:

29: crnd[c] «i

30: cval[c] < PickValue(c, Q,1)
318 send (“2a”, ¢, crnd[c], PickValue(c, Q, 1)) to acceptors

32: PickValue(c,Q,1) is defined in Algorithm 6.

s3: Phase2b(a,i) =
s4: pre-conditions:

358 a € acceptors

36: rnd[a] <i

37 vrnd[a] < i

38: AC, val : C is an i-coordquorum and V¢ € C a received (“2a”, ¢, i, val) from ¢
39: actions:

40: rnd[a] < i

41: vrnd[a] <« i

42: IF v # Any THEN wal[a] < val

43: ELSE wval[a] < CHOOSE v: a received (“propose”, v) form some proposer

44: send (“2b”, a, i, val) to learners

ss: Learn(l) =
4: pre-conditions:

47: [€ learners

48: 3@ : @ is a quorum and Yac € @, a received (“2b”, ac, i, val)
49: actions:

50: learned[l] « val

Phase Two

To start the second phase of round i, coordinator ¢ executes action Phase2a(c,1)
once it has received (“1b”, a, 7,vrnd, vval) messages from every acceptor « in an i-
quorum () and only if it has not executed Phase2a(c,i) already. In this action, c
sends a (“2a”, ¢, i,val) message to the acceptors, where val is the value picked by
c to be accepted by the acceptors. val is picked according to the “1b” messages
c received from acceptors in () in round :. This procedure is defined as function
PickValue(c, Q,1) in Algorithm 6, and explained below:

* If none of the “1b” messages received from acceptors in () has a value differ-

2.3 Multi-Coordinated Consensus 37

ent from the invalid proposal none, then they have not and will not accept
any value for any round j < i. Since any j-quorum R must intersect (), by
Assumption 1, no such a quorum has or will succeed in choosing any value in
j. Hence, ¢ can pick any proposed value.

Otherwise, if some valid value was received by c, let k£ be the greatest round number
vrnd received amongst the “1b” messages received by c.

* If there exists a value v such that, for some k-quorum R, ¢ received message
(“1b”, a, 1, k, v) from every acceptor in a € RN @, then ¢ picks v, since it may
have been chosen by the acceptors of R.

* If no such a value exists, then ¢ can pick any proposed value.

In the first and third cases, in which any value may be picked, if i is a fast round
then ¢ can pick the special value Any, which tells acceptors to accept proposals
directly from proposers.

Algorithm 6 PickValue(Q) in Multicoordinated Consensus
1: PickValue(c,Q,i) =
2: LET k = CHOOSE r : ¢ received (“1b”, a, i, r,_) from some a € @ and
Va' € Q,m' =(“1b”,a’,i,7’,_) c received from a’: 1’ < r}
3: rAcceptors(S, 1) = {a:a € S and c received (“1b”, a, i, r,_) from a
Vals(S,r) = {v: ¢ received (“1b”, a, i, 7, v) from a € S}

4
51 IN
6: IF AR, v # none: Ris an i-quorum and Q) N R € rAcceptors(Q, k) and rVals(Q N R, k) = {v}
72 THEN v

8 ELSE IF i is a fast round THEN Any

9: ELSE CHOOSE v: received (“proposal”, v) from some proposer

Once a round starts, it is on the interest of all agents to have it succeed. Hence,
any coordinator of round 7 can start this round’s second phase even if it did not
start phase one and as long as it has received the “1b” messages required to execute
action Phase2a. This approach allows a round to finish even if the coordinator that
just started it becomes unavailable.

Acceptors accept values by executing action Phase2b(a,i), as in Fast Paxos. The
only difference is that in our multicoordinated consensus this action is enabled if «
has not heard of a round greater than i and has received a message (“2a”, c, i,val)
coming from all coordinators in some i-coordquorum with the same value val. If
i is a fast round and val = Any, then a can accept any value sent in a “propose”
message. If i is classic and, therefore, val # Any, then a accepts val. After accepting
value v, a sends the message (“2b”, i, v) to all learners.

38 Multicoordinated Consensus

Learning a Value

Learning a value happens exactly like in Fast and Classic Paxos. That is, a learner
[executes action Learn(l) when it receives a (“2b”, a, i, val) message from each ac-
ceptor ¢ in an ¢-quorum. The messages imply that val has been chosen and [can
learn it by attributing it to variable learned[l].

2.3.5 Correctness and Liveness

From the explanation of our multicoordinated consensus algorithm, it should be
clear that it satisfies the safety properties of consensus mainly because, as Fast and
Classic Paxos, it ensures that rounds are consistent with previous decisions. It may
seem that this is harder to ensure in a multicoordinated round, since any of its
coordinators can start the round, but, in fact, the complexity is exactly the same.
In a multicoordinated round, a proposal will be accepted by an acceptor only if a
quorum of coordinators has forwarded such a value. Since all coordinator quorums
intersect, only one value is accepted in such rounds. Coordinators of rounds exe-
cuted afterwards only contact the acceptors, as in the other versions of the protocol,
and are not influenced by the multiple coordinators of lower rounds.

Regarding liveness, since our protocol is an extension of Fast Paxos and, as such,
can switch to single-coordinated rounds at any moment, it can ensure liveness under
the same conditions of Classic Paxos. That is, if a quorum of acceptors, a coordinator,
a proposer, and learner do not crash, then the learner will eventually learn the
decision if there is a single coordinator that believes itself to be the leader and the
proposer proposes some value. Nonetheless, it is interesting to understand what
conditions allow a multicoordinated round to finish.

Roughly speaking, a multicoordinated round 7 will finish if its coordinator choses
coordquorums such that at least one coordquorum is composed of non-crashed co-
ordinators, no other round is started, and some proposal is made.

Because our consensus protocol is, in fact, a simplified instance of a more com-
plex protocol which we present in Chapter 3, satisfying the liveness conditions of
the latter will also satisfy the first’s. Hence, we defer a formal discussion about live-
ness when using multicoordinated rounds to Section 3.4.7, where we formalize the
liveness requirements of the more complex protocol.

2.4 Final Remarks and Related Work

The literature on consensus algorithms is very extensive and some of which has been
discussed in the first section of this chapter. For these reasons, here we focus on the

2.4 Final Remarks and Related Work 39

work that is closely related to ours, specially with regards to using spontaneous
ordering.

Spontaneous ordering (or weak ordering oracles) and consensus algorithms us-
ing it were introduced by Pedone et al. [, 1.
Their algorithms, however, assumed crash-stop failures and reliable channels. In
this chapter we have presented improved versions of their algorithms that allow
agents to recover after crashes and messages to be lost, namely B*-Consensus and
R*-Consensus. B*-Consensus takes three communication steps to reach a decision
and requires a majority of stable processes to ensure progress. R*-Consensus can
decide in two communication steps, but requires more than two thirds of stable pro-
cesses for progress. Both algorithms are optimal in terms of communication steps
for the resilience they provide.

The problem of consensus in the crash-recovery model was previously stud-

ied in various other works [, , s

, ,]. In all of these ap-

proaches, the asynchronous model was extended with unreliable failure detection
or leader election oracles.

Fast Paxos [] is a hybrid algorithm with two modes,
one that uses a leader election oracle (classic) and another that uses spontaneous
ordering (fast), being the last one roughly equivalent to R*-Consensus. In the last
parts of this chapter we have introduced an extension to Paxos with another mode
that also uses spontaneous ordering, namely, the multicoordinated mode. In the
same way that fast mode is related to R*-Consensus, the multicoordinated mode is
related to B*-Consensus. That is, it is possible to simulate a run of B*-Consensus
with the multicoordinated mode.

Aguilera et al. [] have shown that, if the number of agents
that never crash (“always-up processes”) is bigger than the number of processes that
eventually remain crashed or that crash and recover infinitely many times, then con-
sensus is solvable without stable storage; without this assumption stable storage is
required. As we do not bound the number of processes that are allowed to crash,
our algorithms must use stable storage. Nonetheless, B-Consensus and R-Consensus
use stable storage sparingly, not keeping all state in it. The algorithms of Dolev et

al.[] and Oliveira et al.|] do exactly the oppo-
site: they keep all their variables in stable storage. Aguilera et al.’s algorithm that
relies on stable storage [] keeps just part of the state in memory

and also writes on stable storage twice per round. Although the fast and multicoor-
dinated modes may be seen as generalizations of R*-Consensus and B*-Consensus,
respectively, the stable storage usage of our multicoordinated consensus protocol is
wiser. First, coordinators never write on disk, since the number of coordinators is
not limited in the protocol and, hence, a failed coordinator can completely forget its

40 Multicoordinated Consensus

state and recover as a new one. Second, acceptors seldom have to write on disk in
the first phase, as we will show in the next chapter, in Section 3.4.5.

Lamport [] has summarized several lower bounds on how fast
a fault-tolerant consensus algorithm for asynchronous systems can be in terms of
communication steps. Roughly, if any value proposed by two or more proposers can
be decided within two communication steps, then less than a third of the acceptors
can be unstable. To be able to decide in three communication steps less than half of
the acceptors can be unstable. B*-Consensus, R*-Consensus, and consequently the
fast and multicoordinated modes meet these bounds. The classic mode of Classic
Paxos may decide in two communication steps and still tolerate permanent failures
of any minority. However, only the value proposed by the round’s coordinator can
be decided in two steps; deciding on a value proposed by other processes requires
at least one message step more. This becomes obvious when considering that the
classic mode is, in fact, a particular instance of the multicoordinated mode.

Hurfin et al. [] presented an algorithm that has the same mes-
sage pattern as Paxos when phase one is skipped. Because it uses round robin to
select the coordinators (the rotating coordinator paradigm) the decision may be de-
layed when a coordinator crashes and the successive one, according the round robin,
is already crashed. Compared to our multicoordinated consensus, the protocol also
lacks the ability to dynamically switch between execution modes. Aguilera et al.’s al-
gorithm [] is also f < n/2 resilient and reaches decision within
three communication steps, from the point of view of the coordinator.

Finally, Aguilera and Toueg [] have proposed a hybrid
binary algorithm (proposals are O or 1) that mixes failure detection and random-
ization to reach consensus. The algorithm works as a series of classic rounds but in
which the coordinator selects a random bit when it is possible to pick any value. It
is not clear how such an approach would improve over the selection of a proposed
value in non-binary consensus.

In summary, in this chapter we presented practical crash recovery WAB-based
algorithms and generalized one of them into a multicoordinated mode for a hybrid
consensus protocol. The multicoordinated mode increases the availability of the
protocol by replicating round coordinators. Although it replicates coordinators, the
multicoordinated mode does not diminishes the maximum number of permanent
failures in the protocol, differently from the fast mode; replicated coordinators do
not need to be recovered, and are discarded if suspected to have failed.

While improving the availability of a single consensus instance may be a minor
improvement, it is just a logical step to improving the availability of long living
protocols for atomic and generic broadcast, or generalized consensus. In the next
chapter we show how to apply the technique into protocols for such problems and
discuss practical aspects of the multicoordinated mode.

Chapter 3

Multicoordinated Generalized Consensus
and Generic Broadcast

3.1 One Problem to Rule Them All

Many applications can be implemented on top of total order (or atomic) broad-
cast [], which enforces agreement on an ever growing
sequence of values. One approach to solving this problem is to use infinitely many
consensus instances, one for each position in the sequence. Using a fast algorithm
in each instance is prohibitive due to collisions, which may happen even during the
stable periods of executions—i.e., without failures or suspicions. In a state machine
replication scenario, for example, a collision may happen if two commands are pro-
posed concurrently to the same instance of consensus. In many systems, however,
commands may commute and there is no need for totally ordering them since the
final state is the same independently of the order in which they are applied. Con-
sensus, as applied to state machine replication, is too strong to capture this notion
and a collision may happen even if the two concurrent proposals are commutable.

Generic Broadcast [,]is a
generalization of atomic broadcast in which agents agree not on a sequence, but on
a partial order of commands. The partial order must be such that any pair of con-
flicting commands are ordered, where two commands are conflicting according to
some meaningful conflict relation (e.g., if they do not commute). A generic broad-
cast protocol may harness such a conflict relation to mitigate the effects of collisions
and efficiently implement state machine replication. By defining the conflict relation
such that any or no pair of commands conflict, generic broadcast becomes atomic
broadcast or reliable broadcast, respectively.

An even more general problem, Generalized Consensus, is defined in terms of
a data structure called command structure, or simply c-struct. The basic operation

41

42 Multicoordinated Generalized Consensus and Generic Broadcast

performed on a c-struct is appending commands to it. Depending on the c-struct
instantiated, generalized consensus solves a different agreement problem. Reliable
broadcast, for example, is an instance of Generalized Consensus whose c-structs
are simple sets. Limit the set’s cardinality to one and the problem degenerates to
consensus; add ordering to the set and the problem becomes generic or atomic
broadcast.

Multicoordinated Paxos

We are aware of only one generalized consensus protocol in the literature, by Lam-
port []. This protocol, namely Generalized Paxos, is based on Fast
Paxos and inherits its two execution modes. As a result, Generalized Paxos suffers
from the same availability limitations of Fast Paxos when compared to our mul-
ticoordinated consensus: it either relies on a leader or requires bigger acceptor
quorums. Again as Fast Paxos, Generalized Paxos is amenable to multicoordinated
execution or, equivalently, our multicoordinated consensus is amenable to “general-
ization”. In the next section we present our multicoordinated version of Generalized
Paxos, namely Multicoordinated Paxos.

Besides its generality, Multicoordinated Paxos has some interesting features from
a practical point of view:

* it allows an infinite number of coordinators to be used in a run, what com-
pletely eliminates the need to recover these agents;

* it allows very efficient usage of stable storage, as coordinators do not write on
disk (since they are not recovered), and acceptors only write once per round
in the absence of failures, even if wrong failure suspicion happens; and,

* it allows load balancing at the coordinators and acceptors.

We discuss these and other topics in Sections 3.4.3-3.4.6.

Since Multicoordinated Paxos solves Generalized Consensus, with an appropri-
ate c-struct it also solves Generic Broadcast. In Section 3.5, we introduce one simple
but powerful appropriate c-struct. To the best of our knowledge, there are three ex-
tensions of the original generic broadcasts algorithm []
in the literature [, , 1.
We compare Multicoordinated Paxos with these works in Section 3.6.

3.2 Generalized Consensus 43

3.2 Generalized Consensus

3.2.1 (C-Structs

Before presenting Multicoordinated Paxos, we formally define c-structs and the Gen-
eralized Consensus problem. The definitions and notation used here are borrowed
from Lamport’s work [].

A c-struct set CStruct is defined by a tuple (Cmd, 1, e), where Cmd is the set of
commands that compose the c-structs of CStruct, L is a “null” c-struct, and e is an
operator that appends a command from Cmd to a c-struct of CStruct, and by a set
of five axioms listed later. More generally, a c-struct v is in CStruct if v = 1 e (' and
C € Cmd,orif v =we(C,w € CStruct and C' € Cmd. For example, one could create
a c-struct set where c-structs are subsets of Cmd, L is the empty set, and ve C' simply
adds element C' to the current value of v. Another c-struct set could have c-structs
as partially ordered sets, L as the empty set, and v e C' as an operation that extends
partially ordered set v with command C' by making C' succeed (with respect to the
partial order) any conflicting element of v, given an external conflicting relation
over Cmd—a c-struct set that could capture the notion of commutable commands.

Before we present the five axioms of a c-struct set, some definitions are necessary.
A finite sequence with elements C, is represented by (C, C,,..., C,,). Seq(S) is
defined to be the set of all (finite) sequences whose elements are in the set S (with
possible repetitions of elements in the sequence). Moreover, we use the term c-seq
when referring to a finite sequence of commands—that is, an element of Seq(Cmd).
We can now extend the operator e to a c-struct v and a c-seq (C}, ..., C,,) as follows:

v if m=0,

UO(C];-.., Cm> :{ (’U. Cl).<02""’cm> otherwise

We say that c-struct w extends c-struct v or v is a prefix of w, and note as v C w,
iff there exists a c-seq o such that w = v e 0. Given a set T of c-structs, we say that
c-struct v is a lower bound of T iff v E w for all w in T. A greatest lower bound
(glb) of T is a lower bound v of T such that w E v for every lower bound w of
T, and we represent it by M7'. Similarly, we say that v is an upper bound of 7' iff
w E v for all win T'. A least upper bound (lub) of T is an upper bound v of T such
that v E w for every upper bound w of 7', and we represent it by LU7T. If C is a
reflexive partial order on the set of c-structs and a glb or lub of T exists, then it is
unique. For simplicity of notation, we use v Mw and v LI w to represent M{v, w} and
L{v, w}, respectively. Two c-structs v and w are defined to be compatible iff they
have a common upper bound, and a set S of c-structs is compatible iff its elements
are pairwise compatible.

We say that c-struct v is constructible from a set P of commands if v = 1 e o,
for some c-seq o containing all elements of P. Moreover, we say that v contains

44 Multicoordinated Generalized Consensus and Generic Broadcast

command C' if v is constructible from some set P of commands such that C' € P.
We define Str(P) to be the set of all c-structs constructible from subsets of P for
some set P of commands—that is, Str(P) = {L e o : o € Seq(P)}.

A c-struct set CStruct must satisfy the five axioms below.

CS0. VC € Cmd, w € CStruct : we C € CStruct

CS1. CStruct = Str(Cmd)

CS2. LC is a reflexive partial order on CStruct.

CS3. For any set P C Cmd and any c-structs u,v, and w in Str(P):

* vMw exists and is in Str(P).
* If v and w are compatible, then v LI w exists and is in Str(P).

e If {u, v, w} is compatible, then u and v LI w are compatible.

CS4. For any command C' € Cmd and compatible c-structs v and w in CStruct, if v
and w both contain C' then v M w contains C.

CS0-CS2 are basic requirements to satisfy the properties just described. CSO
says that by extending any c-struct in CStruct with any command in the respective
Cmd set, the obtained result is a c-struct in CStruct; CS1 requires c-structs to be
well formed; and CS2 forces any CStruct set to have a glb and a lub. CS3 and CS4
are necessary for Generalized Paxos and similar algorithms to ensure the safety and
liveness properties of Generalized Consensus, described next. Roughly, CS3 says
that the lower bound of any two c-structs only contains commands contained in the
two c-structs; the same is valid for the upper bound, if it exists. CS4 states that the
upper bound of two c-structs contains all their commands in common.

3.2.2 Problem Definition

We can now generalize the original definition of consensus to deal with a c-struct
set instead of single absolute values. The problem is defined in terms of a c-struct
set CStruct which, as shown in the previous section, is based on a null value 1, a
set Cmd of commands, and an operator e. Proposers propose commands in Cmd
and we let learned[l] be the c-struct learner [has learned (initially 1). Generalized
Consensus is defined by the following properties:

Nontriviality: For any learner I, learned[l] is always a c-struct constructible from
some subset of the proposed commands.

3.3 Lamport’s Generalized Paxos 45

Stability: For any learner [, if the value of learned[l] at any time is v, then v E
learned[l] at all later times.

Consistency: The set {learned[l] : [is a learner} is always compatible.

Liveness: For any proposer p and learner /, if p, [, and a quorum () of acceptors are
nonfaulty and p proposes a command C, then learned[l] eventually contains
C.

3.3 Lamport’s Generalized Paxos

Generalized Paxos is an extension of Fast Paxos to solve Generalized Consensus.
The algorithm has the advantage that, by the problem definition, a collision is not
characterized if two acceptors accept different but compatible c-structs. In such a
case, both acceptors can later extend their accepted c-structs so that they converge
to the same one (since compatible c-structs have a common upper bound). C-struct
sets like command histories with commutable commands, explained better in Sec-
tion 3.5, might have very few incompatible c-structs, which reduces the chances of
a collision to happen and favors the use of fast rounds.

Generalized Paxos relies on the Fast Quorum Requirement (Assumption 3, on
page 31). It assumes that acceptors have initially accepted L at round 0, lower than
any other round. Since Multicoordinated Paxos extends Generalized Paxos, we just
overview its actions here, and explain them in detail when discussing Multicoordi-
nated Paxos. Generalized Paxos has the following actions.

Propose(p, C) Executed by proposer p to propose command C' € Cmd. In the action,
p sends a (“propose”, C') message to all coordinators and acceptors. (The
same as in Classic Paxos.)

Phasela(c,i) Executed by any coordinator ¢ of round i to start round 7. In the
action, ¢ sends a message (“1a”, ¢, 1) to each acceptor «a asking a to take part in
round :. (The same as in Classic Paxos, except that values are now c-structs.)

Phaselb(a,i) Executed by acceptor a to join round i upon reception of message
(“1a”,1), if ¢ is greater than any other round « has ever heard of. In this case,
a sends a message (“1b”, a, i,vrnd,vval) to the coordinator of round 7, where
vrnd is the highest-numbered round in which « has accepted a c-struct and
vval is the c-struct it accepted in vrnd. As before, this action also prevents a
from executing the same action for a round smaller than or equal to ¢, and
from accepting a c-struct for a round smaller than . (The same as in Classic
Paxos.)

46 Multicoordinated Generalized Consensus and Generic Broadcast

Phase2Start(c,i) In this action, coordinator ¢ of round 7, after receiving a “1b” mes-
sage for round ¢ coming from each acceptor in an i-quorum (), picks a c-struct
and sends it to acceptors to be extended during the round. Picking a c-struct
in Generalized Consensus is like picking a value in Fast-Paxos or in our multi-
coordinated consensus algorithm: if the c-struct was possibly chosen in some
round j < i, the c-struct must be picked. As before, a c-struct is said to be
chosen if it was accepted by all acceptors of some quorum of any round. The
difference is on what accepted means. In the Classic Paxos, acceptors accept
single values, but in Generalized Paxos, when an acceptor accepts a c-struct,
it automatically accepts all of its prefixes. Hence, when picking a value, the
coordinator must consider not only the complete c-structures accepted, but
also their prefixes.

Suppose for example that ¢ has received (“1b”, a4, i, 7, v,) messages from a
quorum of three acceptors q;,1 < k < 3. Also, assume for simplicity that the
c-struct used is a total order of commands, easily represented by a sequence,
and that the messages had the following c-structs: v; = (a, b, c,e,f), v, =
(a,b,c,d) and v;3 = (a, b, c, e, d). Observe that, since the three acceptors form
a quorum, both the sequences (a), (a, b) and (a, b, c) were chosen and might
have been learned. Hence, c is obliged to pick the three c-structs to use in
the second phase of the algorithm. Hence, ¢ picks the longest c-struct, whose
the others are prefixes of; in fact, (a, b, ¢) is the longest prefix of all received
c-structs.

Suppose now that there is another quorum in the system, formed by acceptors
a;, as, and a,. The two quorums are represented graphically in Figure 3.1,
below. If a, has accepted any sequence in round % that extends (a, b, c, €),
then such a sequence was also chosen and should be picked by c. Since ¢
never heard from q,, it has no option but to behave safely and pick sequence
(a, b, c,e). Since a; and a5 disagree about which command should be the fifth
in the sequence, (a, b, c, €) is the shortest sequence that extends all possibly
chosen sequences.

Generalizing from the previous two paragraphs, once the coordinator receives
the “1b” messages from a quorum of acceptors, it picks the c-struct that ex-
tends the largest prefix of the c-structs seen (i.e., its glb), which was already
chosen, and their smallest possibly chosen extensions (lub). This c-struct is
then sent to the acceptors to ensure that if a c-struct v has been chosen at some
round j and w is accepted by some acceptor at a higher-numbered round, then
v E w. As before, for coordinator ¢ to gather the set of all possibly chosen c-
structs in previous rounds, it suffices to look at the “1b” messages with the
highest-numbered vrnd value. More formally, let k£ be such a round number.

3.3 Lamport’s Generalized Paxos 47

{a,b,c,e,d> {a,b,c,d)

Figure 3.1: A system of four acceptors and their accepted values. The two marked
sets of acceptors constitute quorumes.

There are only two cases to consider.

First, if there is no k-quorum R such that, for every acceptor a in RN @, ¢
has received a “1b” message from a with vrnd = k, then c is assured that no c-
struct has been or might be chosen at k. Moreover, the algorithm ensures that
if a c-struct v has been chosen at a round j < k, then any value w accepted
at k satisfies v © w. Therefore, ¢ can pick any c-struct received in one of the
“1b” messages in which vrnd = k.

If the first case does not apply, then, for every k-quorum R such that ¢ has
received a “1b” message with vrnd = k from every acceptor in R N @), ¢ cal-
culates the glb of the c-structs vval received in such messages and adds it to a
set I" initially empty. After that, I" will contain all c-structs that have been or
might be chosen at lower-numbered rounds. The second condition of the Fast
Quorum Requirement ensures that I is compatible and, therefore, has a least
upper bound LIT" that can be safely picked by c.

After picking a c-struct val based on the previous two cases, ¢ sends a message
(“2a”, ¢, 1,val) to all acceptors.

Phase2bClassic(a,i) Upon receiving a (“2a”, ¢, i, val) message from the coordinator,
acceptor a accepts the forwarded c-struct like in Fast Paxos. That is, if & is
highest-numbered round a has heard of and k£ < i, then a accepts val and
sends message (“2b”, i, val) to every learner.

In Generalized Paxos, however, coordinators may send a “2a” message to ac-
ceptors with some c-struct, and later request the acceptors to accept an exten-
sion of such c-struct. This is done in action Phase2aClassic, explained below. To
cope with this extension requests, the pre-conditions of action Phase2bClassic
are extended as follows. Upon receiving a (“2a”, ¢, i,val) message from co-
ordinator ¢, a accepts val iff: £k < ¢V (k = ¢ A v E val), where k is the

48 Multicoordinated Generalized Consensus and Generic Broadcast

highest-numbered round a has heard of and v is the latest c-struct accepted
by a.

Phase2aClassic(c,i) This action is executed by coordinator ¢ of round i to request
acceptors to accept an extension of a previously forwarded c-struct. Hence, it
is executed by coordinator ¢ only if it has already sent a phase “2a” message
for round ¢ to the acceptors. This action is performed only for a classic round
1; for fast rounds, acceptors can extend their accepted c-structs themselves, as
shown in action Phase2bFast, below.

Let (“2a”, 7, val) be the latest phase “2a” message c¢ has sent for round 7 and let
newval be val e o for some c-seq o of proposed values received in “propose”
messages. In this action, ¢ simply sends a message (“2a”,i,newval) to all
acceptors, requesting them to extend what they had previously accepted with
o.

Phase2bFast(a,i) By executing this action, acceptor a appends a command to its
previously accepted c-struct. This action is enabled iff 7 is fast, 7 is the highest-
numbered round a has heard of, a has already accepted a value in 7, and « has
received a (“propose”, ') message. Let v be the latest value a has accepted
in i; a accepts v e C' and sends message (“2b”, i, v ® C) to every learner.

Learn(l) Leaner [executes this action to extend its previously learned c-struct. The
action is executed by [after it receives a phase “2b” message for some round :
from each acceptor in an i-quorum. Let v be the glb of the values received in
such messages; [sets learned[l] to learned[l] L v.

In Generalized Paxos, a round : starts by the round coordinator executing ac-
tion Phasela(c,i). Acceptors then should execute action Phaselb(a,i), followed by
the execution of Phase2Start(c,i) by ¢ and Phase2aClassic(a,i) by the acceptors. Af-
ter this point, the execution depends on whether i is fast or classic. If i is classic
and proposers keep proposing new commands to the coordinator, then the coordi-
nator continuously executes Phase2aClassic(c,i) with longer c-structs, followed by
acceptors executing Phase2bClassic(a,i). If i is fast and proposers keep proposing,
then acceptors execute Phase2bFast(a,i) to append the proposals to their accepted
c-structs. In any case, learners continuously execute Learn(l) to learn the c-struct
accepted and its extensions.

3.4 Multicoordinated Paxos

We now explain Multicoordinated Paxos, our multicoordinated generalized consen-
sus algorithm. Round numbers are defined as in the multicoordinated consensus

3.4 Multicoordinated Paxos 49

protocol. The algorithm assumes a c-struct set CStruct, the Fast Quorum Require-
ment (Assumption 3) for quorums of acceptors, and the Coord-quorum Requirement
(Assumption 4) for quorums of coordinators.

As in Generalized Paxos, we ensure that if a c-struct v is chosen at a round 17,
then any c-struct w that is accepted by any acceptor at some round j > 7 extends
v (v E w). This is guaranteed by the coordinators of a round due to the rule used
by the coordinators to pick a value based on the phase “1b” messages received from
a quorum of acceptors (explained in Section 3.3, action Phase2Start(c,i)). In Mul-
ticoordinated Paxos, we embody the rule in function ProvedSafe(Q, 1bMsg). Before
explaining the function in Section 3.4.2, we present the Multicoordinated Paxos
algorithm.

3.4.1 The Algorithm

Algorithm 7 shows the basic atomic actions that compose Multicoordinated Paxos,
which always ensure safety. To ensure liveness as well, some extra pre-conditions
must be imposed on the actions. The required changes in the algorithm are pre-
sented in Section 3.4.7.

Variables

The algorithm manipulates a set of six variables associated to the roles that agents
play. The variables are initiated as if the first phase of the smaller round available,
which we assume to be 0, has already been executed. Proposers have no special
variable. The variables of a coordinator ¢ are the following:

crnd[c] The current round of c. Initially, 0.

cval[c] The latest c-struct ¢ has sent in a phase “2a” message for round crnd[c].
Initially L.

An acceptor a keeps three variables:

rnd[a] The current round of «, that is, the highest-numbered round « has heard of.
Initially O.

vrnd[a] The round at which « has accepted the latest value. Initially O.
vval[a] The c-struct a has accepted at vrnd[a]. Initially L.

Each learner [/ keeps only the c-struct it has learned so far.

50 Multicoordinated Generalized Consensus and Generic Broadcast

Algorithm 7 Multicoordinated Paxos
12 Proposer Actions:
. Propose(p,C) =
pre-conditions:
a € proposers

s: actions:
send (“propose”, C) to coordinators U acceptors

A owoN

[

7. Phase One:
s: Phasela(c,i) =
9: pre-conditions:

0: ¢ € | Ji-coordquorum

11 crnd[c] <i

12: actions:

13: send (“1a”, ¢, i) to acceptors

14: Phaselb(a,i) =
15: pre-conditions:

16: a € acceptors

17: rnd[a] <i

18: received (“1a”, ¢, 1) from coordinator ¢

19: actions:

20: rnd[a] < i

ai: send (“1b”, a, 4, vrnd[a], vval[a]) to | Ji-coordquorum

22: Phase Two:

23: Phase2Start(c,i) =
24: pre-conditions:

1 ¢ € | Ji-coordquorum

26: crnd[c] <i

27: 3@ : Q is a quorum and Va € @Q, c¢ received (“1b”, a, 1, rnd, val)
28: actions:

29: crnd[c] « i

30: cval[c] « PickValue(c,Q,1)

31 send (“2a”, ¢, crnd[c], cval[c]) to acceptors

s2: PickValue(c,Q,i) =
33: LET 1bMsg = flx)=m: c received m =(“1b”, a,i,—,_,_), a € @
3. IN CHOOSEV:V € ProvedSafe(Q, 1bMsg)

learned[l] The c-struct currently learned by /. Initially L.

As the other Paxos protocols, Multicoordinated Paxos defines actions for agents
to propose, interact to chose c-structs, and learn the chosen c-structs, and the actions
are executed in phases. The proposition of a command, however, is not associated
to any round and can be executed at any time.

3.4 Multicoordinated Paxos

Algorithm 7 Multicoordinated Paxos (Continued)

35:
36.
37.
38
39:
402
412
427

432

44:
45:
46:
47:
48:
49:
50:
511
521
531

54:
55:
56.
57.

58

59:
60.
61:
62:
63.
64:

65:
66.

67.

68:

69.
70.
71.
72:
73:
74.

75.

Phase2aClassic(c,i) =

pre-conditions:
¢ € | Ji-coordquorum
crnd[c] =i
1 is a classic round
c received (“propose”, C')

actions:
cval[c] < cval[c] e C
send (“2a”, ¢, crnd[c], cval[c]) to acceptors

Phase2bClassic(a,i) =
pre-conditions:
a € acceptors

rnd[a] < i
L : Lis an i-coordquorum and V¢ € L a received (“2a”, ¢, 1,_)
vrnd[a] < i or vval[a] is compatible with M{v : a received (“2a”, ¢, i, v), ¢ € L}
actions:
LET LVals = {v:a received (“2a”, ¢, i,v), ¢ € L}
IN
IFvrnd[a] =i
THEN vval[a] < vval[a] U (MLVals)
ELSE wal[a] « ML2aVals
vrnd[a] < i
rnd[a] <« i
send (“2b”, a, 1, val) to learners

Phase2bFast(a)

pre-conditions:
a € acceptors

rnd[a] is a fast round
rnd[a] = vrnd[a], and
a has received a (“propose”, C) message
actions:
val[a] < vval[a] e C
send (“2b”, vrnd[a], vval[a] e C) to learners
Learning:
Learn(l) =
pre-conditions:
l € learners
3@ : Q is a quorum and Yac € Q, a received (“2b”, ac, 1, val)
actions:
LET Q2Vals = {v : [received m =(“2b”, a,i,v), a € Q}
IN learned[p] < learned[p] U (MQ2bVals)

52 Multicoordinated Generalized Consensus and Generic Broadcast

Phase One

The first phase of Multicoordinated Paxos is similar to the other protocols: a coor-
dinator willing to start a round sends a “1a” message to the acceptors and waits for
their replies. The only difference is that in our protocol multiple coordinators may
start the same round simultaneously. Acceptors reply to “la” messages with “1b”
messages, if they have not joined any bigger round.

The goal of this phase is to notify acceptors about the beginning of a new round,
so that they do not accept values for smaller ones, and to gather information about
accepted c-structs to execute the second phase.

Phase Two

After receiving replies from a quorum of acceptors, coordinators can start the sec-
ond phase of the protocol: irrespectively to whether the round is classic or fast, a
coordinator of the round picks a c-struct in action Phase2Start() and sends it to the
acceptors. The c-struct picked extends all c-structs already chosen and contains as
many commands as possible; the procedure is formalized in the next section.

If the round is classic, then the coordinator will append other commands to the
initially picked c-struct and send it to the acceptors. If the round is fast, the acceptors
extend the c-structs themselves. What differentiates Multicoordinated Paxos from
Generalized Paxos is that, in the first, multiple coordinators may execute this phase
in parallel in the same round.

Learning a Value

Learning is performed in action Learn. It consists simply of extending the already
learned c-struct with suffixes from the accepted c-structs. As the learned c-struct
is extended, its commands can be processed by the application according to its
semantics.

Hence, in a general execution scenario, the following sequence of actions is
expected to happen only when a new round starts, due to failures or collisions,
which is supposed to be seldom:

1. One (or more) coordinators will execute action Phasela(c,i) for some high
enough round +.

2. Acceptors will acknowledge it by executing action Phaselb(a,1).

3. All coordinators in i-coordquorums will then execute Phase2Start(c,i), which
will trigger the execution of Phase2bClassic(a, i) by the acceptors.

3.4 Multicoordinated Paxos 53

During the rest of the round, a simpler execution pattern takes place. If the
round is fast, then

1. proposers execute Propose(p,C), and
2. acceptors execute Phase2bFast(a).
If the round is classic (multicoordinated or not), then
1. proposers execute Propose(p,C),
2. the round coordinators execute Phase2aClassic(c), and
3. acceptors execute Phase2bClassic(a,).

In any case, learners repeatedly execute Learn(l).

3.4.2 'The ProvedSafe Function

In this section we define the ProvedSafe function through which coordinators pick
c-structs on the Phase2Start of new rounds. The function has two parameters: (),
a set of acceptors, and 1bMsg, a mapping from every acceptor ¢ in () to a “1b”
message sent by a. If () is an i-quorum and every acceptor ¢ in () has sent “1b”
message 1bMsg[a] with field rnd equal to 7, which is mapped from «a in 1bMsg, then
ProvedSafe(Q, 1bMsg) returns a set of c-structs that are pickable for round .

The function is formally defined as follows. For convenience and simplicity of
the explanation, we assign aliases to the fields of “1b” messages: given a message
m =(“1b”, a, i, vval, vrnd), we refer to the five fields of m as m.type, m.sndr, m.rnd,
m.vval, and m.vrnd, respectively.

Definition 1 (Proved Safe) For any set of acceptors (), and mapping 1bMsg from
each acceptor in () to a phase “1b” message, let:

e vals(S) = {1bMsg[al.vval : a € S}
Set of vval values sent by acceptors in S C Q).

A

e vrnds = {1bMsg[a].vrnd : a € Q}
Set of vrnd values sent in all “1b” messages.

o k= Maz(vrnds)
Highest-numbered round in vrnds.

e kacceptors = {a € Q: 1bMsg[a].vrnd = k}
Set of acceptors that sent “1b” messages with vrnd equal to k.

54 Multicoordinated Generalized Consensus and Generic Broadcast

» QinterR = {QNR: Ris a k-quorum }
Set of intersections between () and every k-quorum R.

o QinterRAtk = {S € QinterR : S C kacceptors}
Intersections of interest: those in which all elements sent “1b” messages with vrnd
equal to k.

o T = {N(vals(inter)) : inter € QinterRAtk}
glb’s of the values sent in the “1b” messages, for every intersection of interest.

Then ProvedSafe is defined as follows:

ProvedSafe(Q,1bMsg) = 1F QinterRAtk = {} THEN vals(kacceptors)
ELSE {UI'}

The function implements the rule explained in Section 3.3, action Phase2Start.
That is, if there is no k-quorum R for which all acceptors in R N) have sent “1b”
messages for round ¢ with field vrnd equal to k, then any value that has been re-
ported in “1b” messages with vrnd = k is pickable. Otherwise, the Fast Quorum
Requirement ensures that all elements of the set I' are extensions of any chosen
c-struct. Even more, due to the properties of c-structs, I' is compatible. As a result,
its lub exists and is pickable. Hence, the lub, which contains as many commands as
possible, should be picked and sent on “2a” messages to the acceptors.

In [], Lamport discusses how to deal efficiently with large c-
structs and all the ideas presented there can be directly applied to our algorithm.
The complexity of calculating lubs, glbs, and verifying the compatibility of c-structs
will depend on the c-struct set being used. Most c-struct sets we are aware of (e.g.,
those presented in [1) admit relatively simple implementations of
these operations. The complexity of calculating function ProvedSafe also depends
on how quorums are defined and it can be simplified if quorums are defined as any
set of processes of a certain size (e.g., majority sets).

3.4.3 Availability and Load-Balancing with Multiple Coordinators

The main problem of single-coordinated rounds as compared to multicoordinated
ones has to do with availability. If the coordinator of a single-coordinated round
crashes, time must be spent with the identification of the failure (usually done
through timeouts), the election of a new coordinator, and the execution of the first
phase of a higher-numbered round, before normal execution can be resumed. The
optimization of these tasks may also effect performance or availability. For example,
aggressive failure detection may trigger false suspicions, and simple leader election
algorithms can elect a crashed process or more than a single leader at a time. If a

3.4 Multicoordinated Paxos 55

round has multiple quorums of coordinators, a single failure will not require imme-
diate round change. Hence, we have introduced multicoordinated rounds as a way
to circumvent the aforementioned availability problems.

A simple implementation of Multicoordinated Paxos would have a fixed number
of coordinator processes in every round and define coordinator quorums of multi-
coordinated rounds as any majority of them so that the Coordquorum Requirement
is satisfied. In such a case, the failure of any minority of the coordinators leaves
at least one quorum of coordinators still available and, therefore, able to forward
proposals to the acceptors.

One could argue that fast rounds also do not rely on a single coordinator dur-
ing normal execution, since acceptors can accept proposals directly from proposers.
However, the Fast Quorum Requirement imposes stricter restrictions on how fast
quorums are defined, which also affects availability since fewer failures are toler-
ated.

The existence of multiple quorums of both coordinators and acceptors also en-
ables implementations with better load balance than Classic Paxos. Recall that in
Classic Paxos all commands must go through the current leader (round coordinator)
and, depending on the system load, this might be a performance bottleneck. In Mul-
ticoordinated Paxos, for a command C' to be learned in multicoordinated rounds, it
must be forwarded by a coordinator quorum and accepted by an acceptor quorum
only. If there are multiple coordinator and acceptor quorums, no acceptor or coor-
dinator needs to process all commands proposed. A simple way to distribute the
load has the proposer p of a command C choose (randomly or through some uni-
formly distributed function) a quorum of coordinators and a quorum of acceptors
for C'. p sends the “propose” message only to the chosen coordinator quorum, with
the chosen quorum of acceptors piggybacked in the message since all coordinators
in the quorum must forward C' to the right acceptors. The coordinators send their
“2a” message with ' only to the indicated quorum of acceptors, which accept C'
and send phase “2b” messages to the learners. If not all learners need to learn about
C, the same approach can be used, forwarding with C' the set of learners to which
the phase “2b” messages should be sent.

Fast rounds also allow distributing the load over the set of acceptors. As be-
fore, however, the stricter quorum requirement implies a worse distribution. If fast
rounds are composed of [(3n + 1)/4] acceptors, where n is the total number of
acceptors (a necessary condition if any majority of the acceptors is a quorum for
a classic round), then it is not hard to verify that every acceptor will have to pro-
cess more than 3/4 of the proposed commands. In multicoordinated rounds, if any
majority of the coordinators of a round : is an i-coordquorum and any majority of
acceptors is an i-quorum, then the load can be distributed so that each coordinator
processes at most (1/2 4+ 1/nc) of the proposed commands, where nc is the total

56 Multicoordinated Generalized Consensus and Generic Broadcast

number of coordinators for round 4, and each acceptor accepts at most (1/2+1/n)
of the proposed commands. It is true that in this scenario, each command must
be dealt twice (first by the coordinators and then by the acceptors), but the coor-
dinators’ action is much cheaper since it does not involve disk writes, as we show
later.

Doing this sort of load balancing does not jeopardize availability. The optimistic
use of a single quorum only does not mean that the other quorums cannot be used. A
clever implementation would resort initially to a single quorum of coordinators and
acceptors. If the command is not learned after some time has elapsed (triggered by
a timeout or a failure suspicion), then other quorums might be used. This wait time
can be set to a minimum since they will never trigger a round change as discussed
in the beginning of this section.

Finally, it is clear from the algorithm that the sets of coordinators and acceptors
need not have the same number of elements. Actually, in many cases it might be
better to have more acceptors than coordinators in a round. Note that the set of
coordinators for round 7 can be completely different from the set of coordinators
of round j # i, but this is not the case for acceptors since they must be queried in
every new round to check whether a value has already been chosen at some previous
round. Moreover, the acceptors’ task of accepting a value is more expensive than
the coordinators’ task of forwarding it, since the former requires a disk write but the
latter does not. As a result, implementations might use a high number of acceptors
to improve the system’s resilience or performance (due to load balancing). But an
equally high number of coordinators for a round increases only the availability of
that round, and the load balancing will not be as effective since the coordinators’
task is cheaper. For a small system, a configuration with 5 acceptors in total and
3 coordinators for multicoordinated rounds (with different sets of coordinators for
different rounds) sounds plausible, since it tolerates the failure of any two processes
and does not introduce temporary unavailability if a single coordinator crashes.

3.4.4 Collisions

Multicoordinated rounds have a drawback that does not exist in single-coordinated
ones—collisions. In multicoordinated rounds, a collision happens when commands
proposed concurrently arrive at the coordinators in different orders and this leads
to their forwarding of incompatible c-structs. If no coordinator quorum forwards
c-structs whose glb can extend the values previously accepted by the acceptors, the
round is stuck since no new command can get accepted.

This is a different type of collision than the one that may occur in fast rounds,
explained in Section 2.3.2. In fast rounds, a collision happens when acceptors accept
incompatible c-structs that cannot further extend the values learned by learners so

3.4 Multicoordinated Paxos 57

far. In this case, however, acceptors pay the price of accepting commands that will
never be learned, which does not happen in collisions of multicoordinated rounds.
This is a major difference between the two kinds of collisions since acceptors must
write on stable storage every time they accept a value but coordinators do not have
to, as we explain in Section 3.4.5.

The mechanisms to solve collisions in the original Fast Paxos algorithm presented
in Section 2.3.2, which guessed the values of “1b” messages for round 7 4+ 1 out of
“2b” messages for round ¢, cannot be directly applied to Generalized Paxos. This
happens because acceptors are allowed to append commands to their c-structs at
will in fast rounds and, hence, unless the coordinator asks the acceptors to move to
the next round, it could wrongly guess the latest acceptances of acceptors and pick
a bad c-struct for the next round. If no other algorithm exists, the techniques we
present below for multicoordinated rounds can be used at the cost of one extra com-
munication step for the acceptors to identify the collision in the c-structs they have
accepted. Another possibility consists of explicitly starting a new higher-numbered
classic single-coordinated round from the beginning after its coordinator identifies
the collision.

In multicoordinated rounds, collision identification can be done by the acceptors
when they receive the phase “2a” messages from the coordinators of a classic round
i. If two coordinators of the same i-coordquorum send “2a” messages for round ¢
with incompatible c-structs, acceptors execute action Phaselb(a,i+ 1) as if they had
received a phase “la” message for round 7 + 1. What comes next will depend on
whether round ¢ + 1 is classic or fast.

If round 7 + 1 is classic and enough acceptors identify the collision, which will
normally happen if messages are not lost and processes do not crash, then the coor-
dinators of round :+1 will execute action Phase2Start(c,i+ 1) based on the received
messages, followed by one or more executions of action Phase2aClassic(c). Thus, the
collision in round ¢ will be resolved with only two extra communication steps (as
compared to the usual three of a classic round). Clearly, to avoid that another col-
lision happens when the coordinators start round 7 + 1, it is advisable to have it
as a single-coordinated round. After some time of normal execution, if conflicting
commands stop being proposed, the coordinator of round 7 + 1 can start a multi-
coordinated round again. This approach is a variation of the coordinated recovery
presented in [1.

If round 7+1 is fast, performance can be improved by setting i+ 1-coordquorums
wisely. Since the Coord-quorum Requirement does not place any restriction on
fast rounds, we can define that any single acceptor by itself constitutes a coor-
dinator quorum for a fast round (playing both roles—acceptor and coordinator).
When a coordinator of round i + 1 (which is also an acceptor) executes actions
Phase2Start(c,i+ 1) and Phase2aClassic(c), it can locally accept the values suppos-

H8& Multicoordinated Generalized Consensus and Generic Broadcast

edly sent in the “2a” messages, without actually sending them. This approach can
resolve collisions with only one extra communication step. However, new collisions
might happen when the round 7 + 1 is started. This is a variation of the uncoordi-
nated recovery presented in [], which also presents some interesting
ideas to avoid having collisions when round : 4 1 is started. We do not cover them
here because the use of a fast round to recover from a collision in a classic one
does not seem to be of practical use. We just present the idea of the uncoordinated
recovery mechanism for completeness.

One might ask herself if there can be some kind of round that does not rely on
a single coordinator but in a coordquorum and still avoid collisions. In the most
general case, its existence would contradict the FLP result since quorums could be
defined to tolerate a single failure and the absence of collisions would mean that
liveness can be achieved in such rounds.

3.4.5 Reducing disk writes

Assumption 4, on page 34 imposes no restriction on coordinator quorums of differ-
ent rounds. If it is always possible to start new rounds with any set of coordinator
quorums, coordinators are not required to write on stable storage. A coordinator
that crashes and later recovers could just be seen as a new coordinator in the system,
which is easily implemented by having an “incarnation” counter associated with its
identifier. In the following we explain how new rounds can be created with any set
of coordinator quorums.

Consider round numbers as records of the form (Count, Id, RType, S), where
Count is a natural number, Id is a coordinator’s unique identifier, RType is a natu-
ral number, and S is a set of coordinator quorums. Rounds are uniquely identified
by the first three fields of the record and totally ordered by comparing these fields
lexicographically. Field S is merely informative and is not taken into consideration
when comparing two rounds. Using this approach, when the current leader wants to
start a new round, it can simply define the four fields according to its current knowl-
edge. By setting C'ount properly, it can always create a round higher-numbered than
any other it has seen before. Id identifies the coordinator that created the round
and possibly the one responsible for coordinated recovery. RType tells the round
type, being O for fast and bigger integers for classic. Finally, S identifies all valid
coordinator quorums for the new round.

Since Assumption 3 requires that quorums of different rounds intersect, ac-
ceptors cannot lose their state after a crash and assume a different identity upon
recovery. This happens because the values accepted by acceptors cannot be for-
gotten, or the algorithm’s safety would be compromised. Therefore, these values
must always be stored on stable storage, incurring a disk write (or equivalent op-

3.4 Multicoordinated Paxos 59

eration) whenever an acceptor executes a Phase2b action. As a result, acceptors
are not as easily replaceable as coordinators and more complex strategies must be
used [,].

Action Phaselb also changes the internal state of an acceptor and, at a first sight,
this seems to imply that Phaselb must also write on disk. However, an acceptor a
may store rnd[a] only in main memory as long as, after recovering from a crash, it
manages to initialize rnd[a] with a higher value than the previous one. We propose
this to be done as follows: field Count, previously described in this section, can
be composed of a major and a minor component, MCount and mCount. When an
acceptor executes Phaselb for some round, if MCount equals the previous value in
rnd[a], it changes rnd[a] in volatile memory only; otherwise, it writes it on disk.
During recovery, the acceptor simulates the reception of a “la” message with an
MCount higher than the one it has on disk. To get values accepted by the recovered
acceptor, coordinators will be forced to use higher rounds. In the normal case,
acceptors write on disk only once, when they are started. In the presence of failures,
this strategy results in one extra disk write at each acceptor, per recovery.

3.4.6 Setting rounds and quorums

The schema used to define round numbers presented in the previous section, that is,
as a vector of the form (MCount:mCount, Id, RType, S), should fit most of applica-
tion scenarios. However, there are some specific cases in which this schema should
be adapted for better performance. There are two main points on doing these adap-
tations: the likeliness of collisions and how they are recovered, and what type of
round follows each other.

For example, if collisions are frequent in the system, then fast rounds should
not be used because the recovery cost could outweigh the economy provided by
fast rounds. If fast rounds are used in conjunction with coordinated recovery, then
they should be followed by single-coordinated rounds. In the case of uncoordinated
recovery, fast rounds should be followed by multicoordinated fast rounds. (See
Section 3.4.4.)

In the case of the example, where some fast rounds should be followed by other
fast rounds, using the record described above would force the use of rounds with
different /d or Count field. Because recovery relies on a process knowing exactly
what is the next round number, this schema would not work. A possible solution
is to change how the field RType is interpreted. For example, letting all RType in
the range O to 5 be interpreted as fast, instead of simply 0, and allowing a round
number to be incremented without changing any but the RType field.

The set of coord-quorums can be defined at run-time, considering the status
of the system when a new round is created. To ensure liveness, multicoordinated

60 Multicoordinated Generalized Consensus and Generic Broadcast

rounds should be followed by single-coordinated rounds (See Section 3.4.7). How-
ever, this transition does not have to be abrupt and could be done through a series
of multicoordinated rounds with smaller quorums, minimizing the risk of collisions
while still allowing the benefits of multicoordination.

Below we present a few general scenarios and discuss how round numbers and
quorums could be defined for them. These scenarios are not necessarily disjoint,
and real world systems would probably share the characteristics of both of them, as
well as other relevant ones. Hence, a per-case analysis is needed to find the best
solution. Notice that none of the Paxos algorithms requires the ordered use of bal-
lot numbers and that coordinators are allowed to skip rounds—possibly based on
the the dynamics of the environment it is in. However, because collision recovery
explores the sequential execution of rounds, skipping rounds could prevent efficient
recovery and therefore the rounds’ configuration should be defined a priori as pre-
cisely as possible.

Highly reliable clustered systems

Clustered systems connected through high-speed networks have a large probability
of spontaneously ordering the messages sent to the same destinations. In such sys-
tems, acceptors executing a fast round are likely to accept the values in the same
order. Therefore, values can be learned in two communication steps, even when
conflicting proposals are made.

In such a scenario, a large sequence of fast rounds followed by single-coordinated
rounds seem the best configuration: most of the time values are fast learned and,
in the rare case of conflicts, they are solved by the variant of uncoordinated recov-
ery presented in Section 3.4.4. Coordinators can always resort to the next single-
coordinated round to ensure liveness if uncoordinated recovery does not succeed.

For this scenario, the values of the RType field in the basic approach can be
mapped to a range of many fast rounds followed by classic rounds, as we mentioned
before. By dividing RType in a major and minor component, as we did with Count,
the number of successive fast rounds is bounded only by the memory size.

If conflicts are rare but tend to be persistent and require coordinated recovery,
then a solution is to map RType’s even values to fast rounds and odd values to
single-coordinated classic rounds.

Crash prone clustered systems

Remember that for a fast round to progress, more than two thirds of all acceptors
must be functional and reachable. Not even resorting to classic rounds would allow
the protocol to progress if this condition is not met. As we explained in Section 2.3.2,
to progress with fewer acceptors in classic rounds, the number of acceptors needed

3.4 Multicoordinated Paxos 61

for fast rounds to terminate may increase to up to three quarters of their total num-
ber. In a scenario where more than one third of acceptors can crash, fast rounds
should not be used.

In such a scenario, even though spontaneous ordering cannot be used to achieve
fast termination, it can be used to improve availability; with multicoordinated rounds,
progress can be achieved in the absence of any minority of coordinators for a given
round. If acceptors and coordinators are collocated, for example, then the round
can tolerate any minority of acceptor-coordinator crashes.

Using the same round number definition as in the previous sections, RType is
permanently set to classic round. The leader starts new rounds whenever the num-
ber of functional and reachable coordinators falls below a certain threshold. The
extra availability given by multicoordinated rounds can be used to relax failure de-
tection requirements.

Highly loaded and time constrained systems

If most proposed commands commute, either multicoordinated or fast rounds can
be used, with the second option having the advantage of smaller latency. However,
even though commands do not semantically conflict, they do contend for stable
storage when accepted at the acceptors. To mitigate the performance loss due to
I/0, the load of accepting values can be distributed over the acceptors by randomly
selecting a quorum to whom send proposals. Since fast rounds require quorums of
more than two thirds of the acceptors, each acceptor must bare the load of at least
two thirds of the proposals. Using classic rounds, the load over each acceptor may
be lowered to roughly half of the acceptances. Since coordinators do not need to
access stable storage, the fewer stable storage accesses at the acceptors fairly makes
up for the extra communication delay with state-of-the-art networks.

Under particularly high load or if other tasks must be performed for each pro-
posal, just forwarding proposals may become a too demanding task for a single
coordinator. For example, if coordinators deal with proposers in an open network
and must authenticate or decode their proposals before forwarding them to accep-
tors. In such a scenario, multicoordination can be used to alleviate the load on each
coordinator to roughly half. Round numbers can be specified as in the previous
scenario.

Conflict prone

In widely distributed systems or under high load, spontaneous ordering cannot be
expected and non-commutable proposals often result in conflicts. In such environ-
ments, if non-commutable commands prevail, then the algorithms will always end
up resorting to single-coordinated classic rounds to finish.

62 Multicoordinated Generalized Consensus and Generic Broadcast

In such an environment, it does not make sense to have fast nor multicoordi-
nated rounds, and round numbers can be defined as the set of integer and parti-
tioned among a finite set of coordinators by some module function. For an infinite
set of coordinators or for having each coordinator as the leader of infinitely many
consecutive rounds, a simplified round number of the form (MCount:mCount, Id)
could be used.

3.4.7 Ensuring Liveness

The Multicoordinated Paxos algorithm, as presented in Algorithm 7, always satis-
fies the safety properties of Generalized Consensus. Regarding liveness, on the one
hand, the possibility of all coordinators always starting new rounds allows the algo-
rithm to progress if a round does not succeed due to coordinator crashes or proposal
collisions. On the other hand, starting new rounds carelessly can also prevent live-
ness, since by starting a new round a coordinator may prevent smaller rounds from
succeeding. In Classic and Fast Paxos, this problem is avoided by using some un-
reliable leader election mechanism to elect a single coordinator as responsible for
starting higher-numbered rounds under its coordination.

In Multicoordinated Paxos, we can use the same strategy to prevent the contin-
uous initialization of new rounds. If the current leader starts a new classic single-
coordinated round (of which it is the only coordinator), liveness is ensured as long
as the leader does not crash and other coordinators do not wrongly think they are
the current leader and try to start a higher-numbered round; such a property is en-
sured by the 2 leader election oracle []. If other coordinators
interfere, the leader starts an even bigger round. Below we change the algorithm to
include negative replies to “1a” or “2a” messages with a round number lower than
the acceptors’ current one.

If the leader starts a fast round, its progress is ensured as long as the leader
does not crash during the execution of phase 1 and collisions do not happen during
the rest of the round’s execution. If there are no failures, collisions can be resolved
by adapting the collision recovery mechanisms presented in [] to
Generalized Paxos; acceptors identify collisions and use the approach we explained
in Section 3.4.4 to solve them, or simply the leader identifies the collision and starts
a new classic single-coordinated round.

In classic multicoordinated rounds, progress is ensured if the leader does not
crash during the execution of phase 1, collisions do not happen, and at least one
coordquorum remains available during the rest of the round execution. The failure
of the leader is not a problem since another correct leader is eventually selected
which will make sure that a new round gets started. As for collisions, the mecha-
nism presented in Section 3.4.4 can be used—the only restriction we make is that

3.4 Multicoordinated Paxos 63

the leader must be one of the coordinators for the following round, otherwise the
leader might think of the round change as an interference and try an even higher-
numbered round. Last, to cope with the failure of coordinators, the leader must
start a new round if it believes that too many of the other coordinators have failed.
Their possible failure can be assessed by monitoring their “2a” messages or through
some external failure detection mechanism. While there are still enough coordina-
tors to form coordquorums, the leader can decide on coordinator quorums for the
next round. When the leader notices that there are not enough coordinators in the
current round to ensure progress, it starts the new higher-numbered round.

We now present a list of modifications to Algorithm 7 to incorporate the mecha-
nisms discussed in the previous paragraphs.

* Add variable amLeader[c] to every coordinator ¢, with any boolean as initial
value.
The variable contains a boolean stating whether coordinator ¢ believes itself
to be the current leader (TRUE) or not (FALSE).

* Add variable activec[c] to every coordinator c¢, with initial 0.
The variable maintains the set of all coordinators whom ¢ believes to be func-
tional. The contents of activec[c] is used both to monitor if the number of
coordinators of a round has fallen too short and to determine the coordinators
that will be in the coord-quorums for the next rounds.

* Add a Nack(a,i) action, enabled when an acceptor a receives a “la” or “2a”
message for a round i < rnd[a] and the coordinators of 7 and rnd[a] are
different. If these pre-conditions are satisfied, then a sends a (“skip”, rnd[a])
message to the coordinator of i.

This action serves to inform the coordinator of i that a round rnd[a], bigger
than ¢ was already initiated, and that it should start an even bigger round.

* Add “amLeader(c]” to action Phasela(c,i) as an extra pre-condition.
This condition prevents coordinators that do not believe themselves to be the
leader from creating new rounds ad infinitum.

* Add “(c received a message (“skip”,j) such that crnd[c] <j <1 or there is

no coord-quorum for round crnd[c] that is a subset of activec[c]) and there
is i-coordquorum that is a subset of activec[c]” as an extra pre-condition to
action Phasela(c,1).
This change lets ¢ start round 7 as a reaction to the “skip” message sent by
some acceptor, or if ¢ believes that no coord-quorum in its current round is
still alive. Moreover, it requires that at least one coord-quorum of round i be
active.

64 Multicoordinated Generalized Consensus and Generic Broadcast

* Add an action “Resend(a)”, whose only sub-action is to resend the last message
sent by agent a.
This action will ensure that messages required for progress are eventually de-
livered.

Since these changes only restrict the pre-conditions of the algorithm’s original
actions or add new actions already allowed by the protocols behavior, the resulting
algorithm is an implementation of the original. Therefore, it maintains the safety
properties of Multicoordinated Paxos.

Let p be a proposer, ¢ a coordinator, [a learner, () a quorum of acceptors, and C
a non-empty set of coordinators. The liveness condition of Multicoordinated Paxos,
MCLiv(p,1,c,Q,C), is the conjunction of the following conditions.

* {p,l,c}uU QU C are not crashed.

* p has proposed a command v.

* c is the only coordinator that believes itself to be the leader.
* activec[c] is a subset of C'.

* For every round i > crnd|[c], there exists a round j > 7 such that some subset
of activec[c] is a j-coordquorum.

* There is an upper bound on the number of uncoordinated recovery tries that
the algorithm makes or messages are delivered in the same order by all co-
ordinators and functions are deterministically executed as soon as their pre-
conditions are satisfied.

If MCLiv(p, 1, ¢, Q, C) holds eventually forever and there is an upper bound on the
number of uncoordinated recovery tries that the algorithm makes, then / eventually
learns a c-struct that contains the command proposed by p. This implies that, as we
mentioned before, Multicoordinated Paxos can ensure liveness under the same as-
sumptions as Classic Paxos since it can always resort to a single-coordinated round
to ensure progress, which is possible when using round numbers as specified in
the previous section. If no conflicting commands are proposed, then the algorithm
ensures progress if MCLiv(p,,c,Q, C) holds eventually forever even if only uncoor-
dinated recovery is used.

3.5 Solving Generic Broadcast with Multicoordinated Paxos

In the Generic Broadcast problem [], agents must agree
on a partially ordered set, or poset, of proposed commands; we refer to these posets

3.5 Solving Generic Broadcast with Multicoordinated Paxos 65

in the generic broadcast problem as c-hists, short for command histories. The par-
tial order in a c-hist must order non-commutable commands, where commutable is
defined in terms of a conflict relation. Read-only operations are common examples
of commutable commands. Operations changing the same piece of data, as a file in
a file system or a row in a database, may be commutable or not, depending on the
application.

3.5.1 Command Histories and Formal Definition

Formally, a command history is defined as follows, for some Generic Broadcast in-
stance.

Definition 2 (Command History) Let Cmd be the set of commands that may be
broadcast and < be a reflexive and symmetric conflict relation over the commands
of Cmd. Then the partially ordered set (S, <) is a command history iff:

e S CCmd

e VC,DesS, C=xD=(C<DorD=<C(C)

A c-struct set whose c-structs are c-hists is defined by the tuple (Cmd, L, ®) where
1 =(0, <) and e is defined as follows:

e Forall ¢ € Cmd

(8,=) if C €8,
(S,=)e =1 (SU{C},=,): Va,beS,a<bs=a=<,0,
Vae S,axC=a<,C otherwise

* For any sequence of commands (C,,...,C,,), Cy,...,C,, € Cmd

B (S’.<) ifm=0,
(5,=)e(CY,...,C,) = { ((S,=)eC)e(C,,...,C) otherwise

The properties that define c-structs are useful when defining practical gener-
alized consensus protocols and it is not clear how useful c-hists are without such
properties. Hence, hereafter, c-hists refer to the c-structs defined from c-hists. What
is more, definitions on Section 3.2.1 defined for c-structs are automatically defined
for command histories as well. In special, we say that a command history g extends
a command history h (h E g) if there exists a sequence o of commands such that
g = heo. As an example of the meaning of such definitions, consider the following
set of c-hists, where a<—b means a < b.

66 Multicoordinated Generalized Consensus and Generic Broadcast

aE ¢ S ph—d
T = G «—— h< d

=R

The lower bounds of T are {1, a,a «b}, being MT = a «b (the greatest lower

bound of 7) and LT = a c be— e (the least of upper bound of 7).

With command histories formally defined, we can now properly state the Generic
Broadcast problem. Let learned[l] be the c-hist learner [has learned. Generic
Broadcast is defined by the following properties.

Non-triviality For any learner [, learned[[] only contains proposed commands.

Stability For any learner [, the value of learned[l] at any time is an extension of
learned[l] at any previous time.

Consistency The set {learned[[] : [is a learner} is always compatible.

Liveness For any proposer p and learner [, if p, [, and a quorum () of acceptors are
nonfaulty, and p proposes a command C, then learned[l] eventually contains
C.

3.5.2 A Simple Command History

Using Multicoordinated Paxos to solve Generic Broadcast is straightforward, and is
more related to choosing the right c-struct than changing the protocol. In fact, the
only change is restricting the use of c-structs in the protocol to c-hists. In this section
we define a simple representation of c-hists and the operations performed on it.
Command histories can be represented as sequences of commands. The com-
mand history L, for example, may be represented simply as (), while the command

=

history b<—d, where the arrows point to the previous elements in the par-
tial order, may be represented as (a, b, ¢, d), {(a,c,b,d), (a,b,d,c), (b,a,d,c), or
(b,a,c,d).

This representation, which is in fact a topological sorting of the c-hist, ensures
that, given a command history (.5, %), integers 7 and j, ¢ < j < |S/|, and the sequence
s that represents the command history, s[i] <X s[7].

New commands can be added to a sequence by simply appending it at the se-
quence’s end, if it is not in the sequence yet. Formally, the e operator can be defined
as follows:

(Cy,...,C) if 34, C' = (|
O A { (C,...,C,,,C) otherwise.

3.5 Solving Generic Broadcast with Multicoordinated Paxos 67

Because these sequences do not represent all the ordering information, the con-
flict relation (=) is still needed to assess the order of commands within sequences
when, for example, calculating the lub or checking the compatibility.

Algorithm 8 below determines the longest common prefix between two com-
mand histories H and I, that is H M I. It does so by checking if the head h of H
exists on / before any conflicting command, in which case it is part of their common
prefix. Otherwise, the algorithm recursively proceeds on the tail of H stripped of
the descendants of &, since none of them can be part of the prefix. Observe that
in this definition we use the set minus operator, \, to remove some element from a
sequence.

Algorithm 8 Longest common prefix of two c-hists A and [.

11 HNI =
22 WH=()VI=)
3. THEN ()

4: ELSE IF Jj : Head(H) = I[j] A =3k <j : Head(H) =< I[k]
52 THEN (Head(H)) o (Tail(H) M (I \ Head(H)))
6: ELSE (Tail(H) \ Descendants(Head(H), Tail(H)) 1)

To calculate the glb of a set of command histories, instead of a simple pair,
the search on the sequence I could be performed in parallel for many sequences.
Nonetheless, here we stick to an iterative approach of simpler understanding, pre-
sented in Algorithm 9.

Algorithm 9 Longest common prefix of a set of c-hists S.
1 NS =

20 IFS={e}

32 THEN €

4 ELSE LETe,f € S,e £f

52 N M((enf)us\{ef})

Determining if two sequences are compatible is more complicated. The pro-
cedure presented below iterates over the first sequence, H, looking for the first
element e of H that does not appear in /. If, during this search, some conflicting
ordering is identified among the sequences, in a procedure similar to the one on the
glb operator, then the sequences are not compatible. If no incompatibility is found,
then the procedure searches for descendants of e in /. If any exists, then it also
indicates incompatibility, as e would have to appear before its descendant also in
I. If none is found, the operator recursively proceeds on the rest of H, but keeping
the list of removed elements in a set of ancestors A, so that new descendants can

68 Multicoordinated Generalized Consensus and Generic Broadcast

be identified in the next steps. Because the conflict relation is reflexive, there is no
need to reverse the roles of H and / and repeat the procedure.

Algorithm 10 Determines if two c-hists H and [are compatible.
1: AreCompatible(H,I,A) =
FH={)VvI=)
THEN TRUE
ELSE IF Jj : Head(H) < I[j] A ~Jk <j : Head(H) = I[k]
THEN FALSE
ELSE IF Jj : Head(H) = I[j]
THEN IF 3f : f € AA Head(H) < I[f]
THEN FALSE
ELSE AreCompatible(Tail(H),I \ Head(H),A)

10: ELSE AreCompatible(Tail(H),I,A U {Head(H)})

U A W N

© o N

AreCompatible can be rewritten to generate the lub of two sequences as it goes
on verifying their compatibility. Because such operator would be more complex, we
opted for a simplified version, which assumes that the sequences are compatible.

Algorithm 11 Shortest common extension of two c-hists H and /.
HUI =
IFH =)
THEN [
ELSE IF Jj : Head(H) = I[j]
s: THEN (Head(H)) o (Tail(H) U (I \ Head(H)))
6. ELSE (Head(H)) o (Tail(H)UI)

AW N =

Finally, the following operator calculates the lub of a set of compatible sequences.

Algorithm 12 Shortest common extension of a set of c-hists S.
1 US =
20 17 S = {e}
3: THEN e
4

ELSE LETe,f € S,e#fIN U((euf)usS\{e,f})

3.5.3 A Run of Generic Broadcast

Figure 3.2 shows a run of our Generic Broadcast algorithm. In order not to clutter
the picture, we have represented messages addressed to multiple agents as a single

3.6 Final Remarks and Related Work 69

line pointing to the different addressees. Commands broadcast are represented as
simple geometric shapes. The conflict relation is defined such that commands with
the same shape or color commute. Time flows left to right.

In the run, the first three broadcast commands ([0, V,O) are chosen and learned
without conflicts. The fourth command, V¥, conflicts with the first and second ones
(v <O and v =< [0). Because both the first and second coordinators had seen [J, they
append V after O in their c-hists (OVY and OOV, respectively). Hence, because
the first coordinator has not seen O, its c-hist will not be compatible with the c-hist
sent by the second coordinator to the acceptors, which has O before ¥. (The Vv
command is not important here, since it commutes with ¥.) Had both coordinators
heard of O, their c-hists would be compatible and accepted by the acceptors. Since
that is not the case, a new round to solve the conflict is required. In the example,
we have shown a single-coordinated round being started and solving the conflict.

b,
E’D
d
7
g

FHH HFF

Q
]
9
]
9
o
L —

A 0\\3 \X)D o \T\:Dvn
.
L L o) o oowv_\ \awv CCVVe
1 o) o) oV ova [oym

Figure 3.2: Multicoordinated round followed by a single-coordinated round: After
a series of successful appends to the accepted c-hist, one conflict happens and one
coordinator changes to the single-coordinated mode to solve the conflict. Observe
how learners learn different but compatible prefixes. The dashed arrows show the
leader polling the acceptors for their accepted c-hists.

3.6 Final Remarks and Related Work

Multicoordination is a technique that improves the availability of leader-based agree-
ment protocols by replacing the leader by multiple coordinators working concur-
rently. Because the use of multicoordination introduces the risk of collisions of
commands at the coordinators, we believe it is better employed by applications that
can use semantics to minimize the cost of conflicts. For this reason, we have used
multicoordination to solve Generalized Consensus, in which semantics may be cap-
tured by defining the problem’s command structures. We have done so by extending

70 Multicoordinated Generalized Consensus and Generic Broadcast

Generalized Paxos, the only Generalized Consensus algorithm that we are aware of.
We have named the resulting protocol Multicoordinated Paxos.

Generic Broadcast [s] is an
instantiation of Generalized Consensus using c-hists, c-structs in the form of partial
orders that do not order commutable commands. In Section 3.5 we have presented
one such c-hist which, in spite of its power, has a very simple implementation.

There are three generic broadcasts algorithms in the literature to which we can

compare Multicoordinated Paxos using our c-hist. GB+ []
by Pedone and Schiper, an improved version of their first algorithm, introduced
along the definition of generic broadcast []. In GB+, a

proposal v is learned in two steps if no conflict arises or if previously accepted con-
flicting proposals have already been chosen. Otherwise the protocol resorts to a fast
consensus instance, amounting to a total of four steps if the consensus works well.
The algorithm was developed for crash-stop environments and requires more than
two thirds of the acceptors to be non-faulty. Hence, if compared to Generalized
and Multicoordinated Paxos and ignoring the difference in the failure model, GB+
is roughly equivalent to the fast mode with uncoordinated conflict recovery. We
say roughly because the fast mode always ignores conflicts between messages that
have been spontaneously ordered, while GB+ only ignores conflicts if the messages
have been delivered distant in time. What is more, Generalized and Multicoor-
dinated Paxos may resort to coordinated recovery and, in the case of Multicoor-
dinated Paxos, an uncoordinated classic recovery which may gradually lower the
requirement for spontaneous ordering until the instance is decided.

The thrifty generic broadcast of Aguilera et al.[], which we
refer to as AGB, requires three steps to learn a proposal in the absence of collisions
and failures. As GB+, AGB may be able to ignore some conflicts but, in general
it falls back to atomic broadcast when conflicting proposals happen, and requires
three more steps to have proposals learned. While AGB tolerates any minority of
crashed acceptors , the authors have also described a variation of the algorithm that
is equivalent to GB+. That is, it tolerates less than one third of failures but decides
in two or four steps.

In the same way that GB+ compares to the fast mode, AGB compares to the
multicoordinated mode of Multicoordinated Paxos: it may identify a collision even
if conflicting commands are received in the same order, and cannot change the
execution mode during execution.

While GB+ and AGB do not resort to consensus or atomic broadcast before at
least two communication steps have been used, Zielinski’s optimistic generic broad-
cast [1, OptGB, starts using consensus from the moment a value is
proposed. With respect to latency, OptGB is more efficient than the other two pro-
tocols: it lets a proposal be learned after two steps if there are no conflicts or pro-

3.6 Final Remarks and Related Work 71

posals are orderly received by the acceptors, and in three steps otherwise. Hence,
OptGB and fast rounds offer the same latency in the absence of conflicts, actual or
perceived. OptGB solves conflicts in one more step, but only if the leader election
oracle it relies upon works. Fast rounds solve conflicts in one step if the uncoor-
dinated recovery works; using uncoordinated recovery takes two steps under the
same conditions of OptGB. Compared to the multicoordinated mode, OptGB is al-
ways faster by one step, at the expense of tolerating less failures—OptGB tolerates
less than one third of acceptor crashes. Moreover, it is not clear how it could be
used to solve Generalized Consensus in general.

Another work that is closely related to ours is the decomposition of consensus
algorithms by Song et al.[]. In this work, the authors break con-
sensus algorithms in two quorums systems, one of selectors (coordinators), that
pick proposals from proposers, and another of archivers (acceptors), that store the
selected proposals and forward them to the deciders (learners). According to the
way these quorums are configured, they can instantiate different protocols. The
same happens with the multicoordinated consensus protocol from Chapter 2. For

example, one can instantiate Rabin [] with fast rounds and uncoordi-
nated recovery, Ben-Or [] with multicoordinated rounds and uncoor-
dinated recovery, or Paxos [] with single coordinated rounds. The

main difference between their work and ours is that they have not applied their de-
construction to the generalized consensus problem, nor to agreement among groups
of processes, which we discuss in the next chapter.

72

Multicoordinated Generalized Consensus and Generic Broadcast

Chapter 4

Fast Agreement for Groups

The ideal situation occurs when the things that we regard as
beautiful are also regarded by other people as useful.
Donald Knuth

4.1 Agreement in Networks of Groups

With data centers spread across the globe and distributed systems that span the In-
ternet, the problem of ensuring consistency in distributed environments has gained
new dimensions. Online retailers and communities, e.g., Facebook and Amazon.com,
have hundreds of thousands of clients around the globe accessing different data cen-
ters, depending on their location. In some cases, although clients may access their
data on any data centers, updates are directed to a single location to be applied
and later propagated to the other locations. In such applications, allowing updates
be performed in any data center such that updates are readily seen after they are
performed, without having to wait for a propagation time, would probably improve
the user experience. Implementing such an update-everywhere database replication
may be done atop of agreement protocols (e.g., Pedone et al.[D.
To be advantageous, such approach must be based on agreement protocols that are
efficient and resilient in this networking scenario, which we refer to as corporative
networks.

Corporative networks may be abstracted as groups of agents and, typically, are
characterized by large differences in terms of latency of communication between
two agents: while agents within the same group use low latency communication
channels to exchange messages, those in different groups may experience latencies
that are orders of magnitude higher. More specifically, we consider networks ab-
stracted by Figure 4.1, on page 74, in which agents are organized in a set of m
subsets or groups I' = {G4, ..., G,,}. Although groups may be seen as data centers,

73

74 Fast Agreement for Groups

slow/expensive

Figure 4.1: Agents distributed in groups in a wide area network: a common setup
for corporative networks. Agents in a group G,,0 < ¢ < m, are physically close to
each other. Agents in A are spread geographically.

the same abstraction also works for smaller setups as, for example, the internals of
a single data center, where groups are racks of nodes.

Besides the sets G,..., G,, of agents that effectively propose and learn the
agreed values, Figure 4.1 depicts another set A, which stands for the acceptors
in the system. To ensure fault tolerance, A should be composed by agents executing
in the same physical locations as the agents in I". Hence, we consider that the cost
of exchanging information between any group and A and between the elements of
A is as expensive as between two agents in different groups.

Fast x Multicoordinated Rounds

Consider the price of solving standard consensus in such an environment using a
leader based protocol such as Classic Paxos. Let G, be the group to which the
leader belongs. Because the protocol is so dependent on the leader, it has the fol-
lowing clear drawbacks: (i) agents in G,,, m # [, must monitor the leader through
intergroup links; (ii) in the case of a leader failure, the reconfiguration takes two
intergroup delays, plus the time to detect the failure; and, (iii) while for every agent
in G, the time between proposal and decision is of two intergroup delays in good
runs, for any other agent not in G| the latency is of at least three intergroup delays.

Using the multicoordinated approach that we have described in the previous
chapters with all coordinators within G, will minimize the effects of the first two
drawbacks. That is, failure detection may be less aggressive since rounds are more
resilient and it is unlikely that rounds will need to be changed due to conflicts,
since groups are probably within a single area network where spontaneously is more
likely. Multicoordination, however, does not help with the third drawback.

4.1 Agreement in Networks of Groups 75

To allow a two-step latency from any group of agents, fast rounds would be
more appropriate, but they have their own drawbacks: collisions, a large number
of messages, and lesser resilience. One way to cope with collisions is to rely on
spontaneous ordering of proposals but that may not be reasonable over intergroup
links for any minimally loaded system. The effects of collisions can be minimized by
using protocols that are conflict aware, as Generalized and Multicoordinated Paxos.
More than simply avoiding conflicts, this approach has the extra benefit of letting
multiple values be decided in each round.

To minimize the number of messages exchanged, instead of letting every agent
propose in every fast round, one agent may be selected from each group to aggre-
gate the groups’ proposals and forward them to the acceptors. Such a fast round
with aggregation is, in fact, a multicoordinated round in which each agent aggre-
gating proposals is a coordquorum. Observe that, in this case, the coordquorum
requirement (Assumption 4, on page 34) is not satisfied.

When comparing single-coordinated and fast rounds, we see that the cost for
letting possibly conflicting values be proposed in a round is to require more accep-
tors be available. That is, we require Assumption 3 to be true. The same is valid
for multicoordinated classic and multicoordinated fast rounds, as the one described
in the previous paragraph. That is, either the coordquorum or the fast-quorum re-
quirement can be relaxed, but not both at once, unless the absence of conflicts is
guaranteed in some other way.

Collision-Fast Rounds

Guaranteeing that proposals do not conflict is exactly what the Collision-Fast Paxos
protocol [] does to ensure that, in the absence of failures and
message loss, agents reach agreement and learn the decision in two communication
steps. In Collision-Fast Paxos, CFPaxos for short, agents agree not on a single value
but on mapping from each proposer to its proposed value, allowing the protocol
to void any conflicts since each proposal is mapped from a different proposer. If
commands are not commutable, then once the mapping is learned, a deterministic
function may be applied to transform it into a sequence. Another very interesting
aspect of CFPaxos is that, in the absence of failures, the more parallel proposals there
are, the smaller the relative cost for each one to be learned because all proposals
are learned in parallel.

Disjoint Coordquorums

In this chapter we redefine coordquorums to be overlapping inside a group but
disjoint across them, and apply these disjoint coordquorums to obtain an efficient
an highly available agreement protocol for groups of agents. Inside each group,

76 Fast Agreement for Groups

proposers to send their proposals to local coordinators that forward proposals to
the acceptors in A. To minimize the overhead of having multiple coordinators in
each group, we improve our protocol to harness multicast technologies to let agents
in one group address other groups as a whole, with single messages, and become
oblivious to their contents. In order to avoid unnecessary round changes, we fur-
ther improve our protocol to exchange coordinators inside a group without starting
new rounds, as long as a majority of the coordinators inside a group are alive. Our
protocols are based on CFPaxos and their rounds are roughly equivalent to the mul-
ticoordinated fast rounds that we described above, but in which conflicts do not
happen.

In the next sections we first overview the Collision-Fast Paxos protocol and then
present our extended protocols. In Section 4.4 we show how CFPaxos rounds, and
of our extended protocols, may be added as another mode into Multicoordinated
Paxos and present the respective c-struct set.

4.2 Collision-Fast Paxos

In CFPaxos learners must eventually learn a mapping from all proposers to the val-
ues in that they have proposed or to a special value Nil. Ideally, a proposer would
be mapped to Nil only if it does not have any proposal to make. Nonetheless, due to
the asynchrony of the system and false failure suspicions, proposers can be mapped
to Nil also if suspected to have crashed during the execution of the protocol. The
mapping is a special data structure called value mappings [1,
or v-maps. These mappings are also what names the problem solved by CFPaxos,
that is, the Mapping Consensus problem [], or M-Consensus for
short. We explain the v-maps and the M-Consensus problem in the next two sec-
tions.

4.2.1 Value Mapping Sets

A Value Mapping Set VMap is defined in terms of sets Domain and Value as the
set of all surjective mappings from subsets of Domain to values on Value or to
Nil ¢ Value. That is, a value mapping (v : D — R) € VMap has as domain D C
Domain and as range R C Value U {Nil}, such that all values in the range are
mapped from some value in the domain. Let | be a mapping with empty domain
and range. 1 is clearly an element of every value mapping set.

We represent a v-map v : {a} — {b}, with domain and range of cardinality one,
simply as {a — b}. We refer to such v-maps as s-maps, short for “single maps”, and
define the e operator that extends a v-map with an s-map. Formally, e is defined as
follows, where v is a v-map, s is an s-map, and Dom(v) is the domain of v-map v:

4.2 Collision-Fast Paxos 77

v ® s = w, such that

— Dom(w) = Dom(v)U Dom(s),
- Ve € Dom(v),w(e) =wv(e), and
— Ve € Dom(s)\ Dom(v),w(e) = s(e).

Although described for a v-map and an s-map, the e operator naturally works
for any two v-maps. One can think of extending a v-map v with another v-map w
as the recursive extension of v with the s-maps that form w. We say that v-map v is
a prefix of v-map w and that w extends v (v E w) iff there exists a v-map o such
that v e 0 = w. Hence, C is a partial order relation on v-map sets.

Other than the aforementioned single maps, two other v-maps are of special
interest: complete and trivial. Complete v-maps are those whose domain equals
the respective Domain set; complete v-maps cannot be extended, hence the name.
Trivial v-maps are complete v-maps whose ranges equal { Vil}.

A v-map set defined by Domain and Value is, in fact, a c-struct set defined by
the tuple (Cmd, 1, e) where C'md is the set of all s-maps in Domain X (Value U Nil).
That is: Cmd = {{d — v} : d € Domain A v € Value U {Nil}}

Hence, lower and upper bounds as well as least upper bounds and greatest lower
bounds are naturally defined for v-map sets. As for any set of c-structs, the exis-
tence of the lub LIV of a set of v-maps V' depends on V' being compatible. A set
V' of v-maps is compatible iff for every pair of v-maps v, w € V, for all elements
e € Dom(v)N Dom(w),v(e) = w(e).

4.2.2 M-Consensus

The M-Consensus problem is formalized in terms of proposers, acceptors, learners,
and a v-map set whose Domain and Value sets equal the set of proposers and the
set of proposable commands, respectively.

As proposers propose commands, learners learn v-maps from proposers to com-
mands or to Nil. Learners may learn different v-maps, but they must be always
compatible. A learner can only learn another v-map if it is an extension of the previ-
ously learned one. Eventually, all nonfaulty learners must learn the same complete
non-trivial v-map. Formally, the properties of M-Consensus are the following, where
learned[1] is the v-map learned by learner [, initially L [1:

Nontriviality For any learner I, learned[l] is always a nontrivial v-map and the
range of [earned[l] contains only proposed commands.

Stability For any learner [, if learned[l] = v at some time, then v C [earned[[] at
all later times.

78 Fast Agreement for Groups

Consistency The set of learned v-maps is always compatible and has a nontrivial
least upper bound.

Liveness For any proposer p and learner [, if p,/ and a quorum of acceptors are
nonfaulty and p proposes a value, then eventually learned[[] is complete.

The specification of M-Consensus is similar to the one given for consensus, in
Chapter 2. This happens because the two problems are equivalent: one can solve
consensus by deterministically choosing a proposal from the M-Consensus solu-
tion, and build a v-map whose range equals the decision of consensus to solve M-
Consensus. As a result, all lower-bounds of consensus are valid for M-Consensus,
as for example, the Quorum Requirement for asynchronous algorithms (Assump-
tion 1).

4.2.3 Collision-Fast Paxos

CFPaxos [] is a Paxos-like M-Consensus protocol. As with other
Paxos-like protocols, CFPaxos runs in rounds totally ordered by a relation < and as-
sociated to a single coordinator agents that may start them. Each round is associated
to a subset of the proposers, which are the only ones allowed to send their proposals
to the acceptors in that round. Hence, they may have their proposals decided in two
communication steps in such a round. We call these proposers the collision-fast pro-
posers of the round. The other proposers use the collision-fast ones as their proxies.
As we explain later, making all proposers collision-fast for all rounds would restrict
the algorithm’s resilience.

To propose a value v in some round, a collision-fast proposer p builds the s-
map {p — v} and sends it to the acceptors and the other collision-fast proposers
of the round. This is a request to the acceptors to accept the s-map and to inform
the other collision-fast proposers that a proposal has been made. When informed
of a proposal, a collision-fast proposer ¢ may decide to send its own s-map to the
acceptors and the other collision-fast proposers or to abstain from proposing in that
round. To abstain, ¢ sends the s-map {q — Nil} directly to the learners.

Acceptors accept s-maps to extend their accepted v-maps. Since they only receive
s-maps with non- Vil values from collision-fast proposers, their accepted v-maps al-
ways map to a range other than {Nil}. Every time acceptors extend their accepted
v-maps, they notify the learners about the newly accepted v-map.

As learners receive notifications from the acceptors and the Nil valued s-maps
from the collision-fast proposers, they can identify which proposers must be mapped
to Nil and which have had their proposals already accepted by a quorum of ac-
ceptors satisfying Assumption 1. We say that these mappings are chosen and are
bound to compose the complete v-map which learners will eventually learn. For-

4.3 Multicoordination and Collision-Fast Paxos 79

mally, a v-map v has been chosen in a round r iff, for every collision-fast proposer
p € Dom(v), of round r, either

* there is a quorum of acceptors which accepted v-maps mapping p to v(p), or
* p has proposed {p — Nil} in r and v(p) = Nil.

In a good run of CFPaxos in which a single collision-fast proposer p proposes a
value v, a round executes as follows:

* p proposes {p — v};

* after one communication step, the acceptors and each other collision-fast pro-
posers c¢p learn about {p — v} and, respectively, accept the value and send the
s-map {cp — Nil} to learners.

* Learners receive the messages from the acceptors and collision-fast proposers
and learn the v-map decided.

If other collision-fast proposers also have values to propose, then instead of send-
ing {cp — Nil} to learners, they send their valued s-maps to the acceptors and the
other collision-fast proposers, as p did. Hence, if collision-fast proposers are syn-
chronized, all values will be learned within two steps. If there are no failures or
message losses but they are nor synchronized, then the protocol takes three steps to
terminate.

To cope with failures, an elected leader will start a new round with a different set
of collision-fast proposers when suspecting that one of the current ones has crashed.
To ensure consistency, the leader starts the new round by identifying possibly chosen
v-maps and making sure that they are the only possibly chosen v-map in the new
round. The procedure is similar to the other Paxos algorithms and, in special, to
Generalized and Multicoordinated Paxos: if no v-map may be possibly chosen at a
lower-numbered round, the collision-fast proposers of the new round are notified
so that they can fast-propose.

For a full description of the algorithm, the interested reader is referred to the
original work [], in which the authors prove the correctness of
the algorithm, show how to implement Atomic Broadcast on top of CFPaxos, and
state the assumptions needed to ensure liveness.

4.3 Multicoordination and Collision-Fast Paxos

Collision-Fast Paxos may be used to reach agreement between processes in various
scenarios, but it is specially suited for systems that can be organized in groups of

80 Fast Agreement for Groups

processes. More specifically, consider the scenario depicted by Figure 4.1, on page
74. By assigning one collision-fast proposer to each group, to whom the other pro-
posers in the group send their proposals, CFPaxos can deliver messages from each
group to each other in two intergroup communication steps in the absence of fail-
ures. In case some collision-fast proposer crashes, the leader simply starts a new
round replacing the crashed collision-fast proposer with another proposer in the
same group. If a group G is disconnected or its proposers are too unstable to as-
sume the role of collision-fast proposer, then the leader can start rounds without a
collision-fast proposer local to G, forcing its regular proposers to send their propos-
als to coordinators in the other groups or stop proposing.

We extend CFPaxos to tolerate the failure of collision-fast proposers in a group
without changing rounds or leaving the proposers “orphan” in situations in which
CFPaxos would do so. Our extension consists in using multicoordination inside each
group. Because collision-fast proposers execute the tasks that we have associated to
coordinators in the previous chapters, namely, forwarding messages from proposers
to acceptors, hereinafter we refer to them also as coordinators.

There are two main differences between the original CFPaxos and our multicoor-
dinated version. First, instead of a single coordinator per group each round defines
a set of coordinators per group. The set of coordinators of a group implement the
collision-fast proposer in the original protocol. To propose in some round, a pro-
poser sends its proposal to all coordinators in its group. The coordinators of the
current round then forward the proposals to the acceptors. Second, in the exten-
sion, agents agree on a map from groups to proposed values, as opposed to maps
from proposers to values as in CFPaxos. That is, coordinators send s-maps of the
form {G — v} to the acceptors, where G is a group and v the proposal of some
proposer in G (or possibly an aggregation of them).

On the acceptors side the only difference is that acceptors do not accept a pro-
posal unless it has been received from a quorum of coordinators of the respective
group for the respective round. More precisely, let G, be the set of quorums of co-
ordinators of group G in round i, or the G,-coordquorums. An acceptor a accepts
proposal {G — v} in round i if it has received the same proposal from every coor-
dinator in some set () € G,-coordquorum. To ensure that no two acceptors accept
different mappings for the same group, we require that every two quorums intersect.
This requirement is formally stated by Assumption 5.

Assumption 5 (Group Quorum Requirement) For any round 1, if P and @) are G;-
coordquorums, then PN Q) # 0.

In Section 4.3.1 we detail a basic algorithm, BasicMCE which implements our
multicoordinated extension of CFPaxos. This basic algorithm improves the resilience
of CFPaxos but may be further enhanced to allow reconfiguration internally to a

4.3 Multicoordination and Collision-Fast Paxos 81

group before resorting to a round change. We present this algorithm, which we call
ExtendedMCE in Section 4.3.2.

4.3.1 Basic Algorithm

In BasicMCE we assume that every proposer and coordinator a knows to which
group it belongs. This information is stored in the variable group[a]. Proposers
keep no other information. A coordinator ¢ has two other variables:

crnd[c] The current round of c¢, initially O.

cval[c] The s-map that c¢ is proposing in round crnd[c], if already defined, or the
special value none, otherwise. The value is defined and informed by the coor-
dinator who started the round or left to be defined once a proposal is received
from some proposer. Initially, it equals none.

An acceptor a keeps three variables:

rnd[a] The current round of «; initially O.
vrnd[a] The round at which « has accepted its latest value; initially O.

vval[a] The v-map a has accepted at vrnd[a] if it has accepted something at vrnd[a],
or special value none otherwise; initially none.

Each learner [keeps only the v-map it has learned so far.
learned[l] The v-map currently learned by /; initially L.

We assume that round numbers are partitioned among the possible coordinators
in the protocol, for example, by including the coordinator’s unique identifier as part
of the round number. Moreover, every round is associated to a set of coordinator
quorums. This scheme may be defined as in Section 3.4.5 by having each round
number as the sequence (Count, Id, S), where Count is an integer, Id is the coor-
dinator of the round, and S is the set of coordinator quorums. Round numbers are
compared lexicographically taking only the two first fields into account to define the
required total order among them.

Algorithm 13, on the next page, presents the actions of BasicMCE

Proposing a Command

To propose a value v, proposer p executes action Propose(p,v). In the action, p
simply sends its proposal to all coordinators that belong to its own group for them
to forward the proposal to the acceptors. The proposal is executed out of the context
of the phases one and two of the algorithm, which effectively choose a v-map.

82 Fast Agreement for Groups

Algorithm 13 Basic Implementation Multicoordinated Collision-Fast Paxos
1: Proposer Actions:

. Propose(p,v) =
pre-conditions:
p € proposers
actions:
send (“propose”, v) to all coordinators of group group[p]

o v A ow N

7: Phase One:
. Phasela(c,i) =
pre-conditions:

o ®

10: ¢ is the coordinator of 4

11 crnd[c] <i

12: actions:

13: send (“1a”, ¢, i) to acceptors

14: Phaselb(a,i) =
15: pre-conditions:

16: a € acceptors

17: rnd[a] <i

18: received (“1a”, ¢, i) from coordinator ¢
19: actions:

20: rnd[a] < i

21: send (“1b”, a, i, vrnd[a], vval[a]) to ¢

22: Phase Two:
23: Phase2Start(c,i) =
24: pre-conditions:

25: ¢ is the coordinator of i
26: crnd[c] <i
27: 1@ : Q is a quorum and Va € @Q, c received (“1b”, a, 1, rnd, val)
28: actions:
A . .
29: LET v = PickValue(c, Q,1)
30: IN
31: crnd[c] < i
32: 1rv=_1 THEN send (“2S”, ¢, i, v) to UG e r G;-coordquorum
33! IF ¢ € | J 4 e - Gi-coordquorum THEN cval[c] < none
34 ELSE send (“257, ¢, 1, v) to UG e r G;-coordquorum Uacceptors
35: IFc E UG e r G;-coordquorum THEN cval[c] < v(group[c])

6 PickValue(c,Q,i) =
371 LET k = CHOOSE r : ¢ received (“1b”, a, i, r,_) from some a € Q and
Va' € Q,m' =(“1b”,a’,4,7’,_) c received from a’: v’ < r}
38: S = {v: creceived (“1b”, a, i, k, v) from a € Q} \ {none}
IN 1FS=1{} THEN L BLSE US e{G €T — Nil}

w

w
0

4.3 Multicoordination and Collision-Fast Paxos 83

Phase One

To start the phase one of round 4, the coordinator c of i executes action Phasela(c,1).
In the action, ¢ queries the acceptors about previously accepted v-maps by sending
them a (“1a”, ¢, i) message.

An acceptor a reacts to a (“la”, ¢,i) message as follows: if its current round
rnd[a] is smaller than i, then a sets rnd[a] to i and replies to ¢ with message
(“1b”, a, i, vrnd[a], vval[a]). Through this “1b” message, a promises to ¢ that it will
not accept any v-map in any round smaller than +.

Phase Two

The second phase of round i starts when its coordinator ¢ receives “1b” messages
from a quorum () of acceptors for round . It then executes action Phase2Start(c,1)
as follows. Initially, ¢ picks a v-map v that must extend any v-map possibly chosen
in a round smaller than ¢; the v-map is picked based on the “1b” messages received
from the acceptors in () through function PickValue(c, Q,1), which we explain later.
Next, ¢ sends a (“2S”, ¢, i, v) message to all the coordinators in the round i. The
purpose of this message is twofold: first, it lets the coordinators that form the co-
ordquorums of round ¢ know whether they are allowed to propose something (if
v = 1) or not; second, it lets acceptors know whether the coordinator who started
i has defined a single mapping that they can accept in the round (v #) or not. If
v # 1, the message is also sent to the acceptors. If ¢ is also one of the coordinators
of i, it sets its cval[c] variable as the other coordinators will do after receiving the
“2S” message: to none if v = L or to v(group[c]) otherwise.

When a coordinator ¢ receives message (“2S”, d, i, v) for the first time it executes
action Phase2Prepare. In the action, c first sets crnd[c] to 7 and then checks whether
v equals | or not. If v # L, then it sets cval[c] to v(group[c]), which has been
determined by the coordinator who started the round. Otherwise, it sets cval[c]
to none, to indicate that it can still send some s-map to the acceptors by executing
action Phase2a(c,i).

After having executed action Phase2Prepare(c, i), if it is in some coordinator quo-
rum of round ¢ for group group[c], coordinator ¢ may execute action Phase2a(c,1)
in two situations. The first situation is after receipt of a (“propose”, w) message, in
which case ¢ sets cval[c] to w and then sends a (“2a”, ¢, i, {group[c] — cval[c]})
message to the acceptors and all the other coordinators of round i. The second is
after receipt of a (“2a”,_,7,_, { G — w}) message where { G — W} is an s-map from
group G # group[p] to a non-Nil value w. In this case, ¢ sets cval[c] to Nil and
sends message (“2a”, ¢, i, {group[c] — cval[c]}) directly to the learners.

An acceptor a executes action Phase2b(a,i) upon receipt of a (“2S”, ¢, i, v) mes-

84 Fast Agreement for Groups

Algorithm 13 BasicMCF (Continued)
s0: Phase2Prepare(c,i) =
#1: pre-conditions:

w2 c€|Jg e Gi-coordquorum

43: crnd[c] <i

44: ¢ received (“2S”, ¢, i, v)

45: actions:

46: crnd[c] « i

47: IF v = L THEN cval[c] < none ELSE cval[c] « v(group[c])

s8: Phase2a(c,i) =
4. pre-conditions:

s0 ¢ € |Jg e Gi-coordquorum
518 crnd[c] =i A cval[c] = none
52: v : (¢ received (“propose”, v)) V

(received (“2a”,d,1,{G — w}): G # group[c] A w # Nil = v)
53: actions:

54 cval[c] « {G— v}
55 1IF v = Nil THEN send (“2a”, ¢, crnd[c], cval[c]) to learners
56: ELSE send (“2a”, ¢, crnd[c], cval[c]) to UG e 1 G;-coordinators Uacceptors

s7: Phase2b(a,i) =
ss: pre-conditions:
59 a € acceptors
60: rnd[a] <i
61: (a received (“2S”, ¢, i, v): v# L A(vnrd[a] < iV vval[a] = none))Vv
(3L,v # Nil : Lis an G;-coordquorum AVc¢ € L: a received (“2a”, ¢, i,{G — v}))
62: actions:

63: IF a received (“2S”, ¢, i,v): v # L A(vnrd[a] < iV vval[a] = none)
64: THEN wal[a] < v
65: ELSE IF 3L, v # Nil : (L is an G,-coordquorum) A (V¢ € L: a received (“2a”, ¢, i,{G — v}))

A (vnrd[a] < iV vval[a] = none)
66: THEN vval[a] «— {G — v} e {G € I — Nil}

67: ELSE vval[a] < vval[a] @ {G — v}
68: rnd[a] < vrnd[a] « i
69: send (“2b”, a, i, vval[a]) to learners

70: Learn(l) =

71: pre-conditions:

72: [€ learners

73: 1Q : @ is a quorum and Va € Q, [received (“2b”, a, i, val)

74: dyeTl:VGey:3P: Pisa G;-coordquorum and V¢ € P, | received (“2b”, ¢, i, {G — Nil})
75: actions:

76: LET Q2Vals = {v: [received m =(“2b”, a,i,v), a € Q}

77: IN learned[l] < learned[1] U (MQ2bVals ® {G € y — Nil})

4.3 Multicoordination and Collision-Fast Paxos 85

sage for round 7 from coordinator c, if ¢ is bigger than its current round, rnd[a] or if
it equals its current round but « has never accepted any v-map, i.e., vval[a] = none.
If this is the case, then a accepts the v-map v picked by c¢. It does so by setting
rnd[a] and vrnd[a] to 7 and vval[a] to v.

Acceptors may also execute action Phase2b(a, i) after receiving a (“2a”, ¢, 1, {G —
v}) message from every coordinator ¢ in some G,-coordquorum L, where v # Nil.
Observe that such a condition implies that the coordinator who started round 7 has
picked an empty v-map in action Phase2Prepare and informed the coordinators of
i with “2S” messages. Hence, the “2a” messages received from the coordinators
in L actually convey the information in the “2S” not received. When first executing
action Phase2b in this case, a has not accepted any v-map yet. Hence, besides setting
rnd[a] and vrnd[a] to i, a it sets vval[a] to { G — v} extended with {H — Nil} for
every group H with no H;-coordquorum. That is, it records the fact that it will not
receive any “2a” messages from coordinators in H during round 7. On the following
times that a executes Phase2b(a,i), it simply extends vval[a] with {G — v}, that
is, it sets vval[a] to vval[a] @ {G — v}. The action finishes when « sends message
(“2b”, a, i, vval[a]) to all learners, with the updated value of vval[a].

Because a coordinator can only pick a single v-map when starting the phase two
in action Phase2Start(c, 1), the two conditions to execute action Phase2b are mutually
exclusive. That is, there are no two acceptors such that one executes action Phase2b
due to receipt of “2S” messages and another that executes it due to receipt of “2a”
messages for the same round :. Either both accept the same complete v-map v sent
by the coordinator, or they accept s-maps received from quorums of coordinators.
Since no coordinator can send different “2a” messages for the same round and all
quorums of the same group for round ¢ intersect, by Assumption 5, there is only
one s-map per group that may be accepted. Since no accepted s-map conflicts, all v-
maps accepted by must be compatible. This property is explored in picking a v-map
in function PickValue(c, (), 1), explained next.

Picking a v-map

Let k be the highest vrnd in the “1b” messages that ¢ received from acceptors in ()
in round i, and let S be the set of all v-maps received in the “1b” messages with
field vrnd equal to k, not including none. If S is empty, then no v-map has been or
might be chosen at a lower-numbered round and the function returns L.

If S is not empty, then some v-map has been or might still be chosen at a round
lower than or equal to k. In this case, the function evaluates to LIS extended with
{d — Nil} for every coordinator d. Because the coordinator of round k£ must have
picked a v-map that extended v-maps possibly chosen on rounds smaller than k£ and
because any v-map chosen in £ must be in S due to Assumption 1, the v-maps in S
are extensions of any v-map possibly chosen in a round smaller then k. Moreover,

86 Fast Agreement for Groups

as we explained in the previous paragraphs, acceptors do not accept conflicting s-
maps in the same round and, therefore, S is compatible and LIS extends any v-map
possibly chosen at k. In addition, because acceptors only accept non-/N:/ v-maps,
LIS is also non-NVil.

Learning a Value

Learning a v-map happens in action Learn. The action is enabled for a learner
[once it has received “2b” messages for some round ¢ from a quorum () of ac-
ceptors and message (“2a”, ¢, r,{G — Nil}) from every coordinator ¢ in some G-
coordquorum P for every group G in a (possibly empty) subset y € T" of the groups
that have coordinators in round 4. In this case, [calculates the lub of the cho-
sen v-maps based on the received information in order to update its currently
learned v-map. Let Q2bVals be the set of all v-maps received in the “2b” mes-
sages for round ¢ from acceptors in (). The glb of Q2bVals is the chosen v-map
identifiable from the messages in Q2bVals. Hence, the action sets learned[l] to
learned[1] U (N(Q2bVals ¢ {G € y — Nil})).

4.3.2 Adding Intra-group Reconfiguration

Although reconfiguration happens less often in BasicMCF than in the original CF-
Paxos, it may still happen if coordinators inside groups are unreliable. In the fol-
lowing we discuss how to extend BasicMCF in such a way that, in certain situations,
failures are handled inside groups without changing rounds. This extended algo-
rithm, that we call ExtendedMCE makes two extra assumptions.

The first assumption is that messages may be addressed to the coordinators in-
side a group obliviously to the group’s actual membership. In practice, this feature
is available through multicast protocols such as IP multicast. In IP multicast, pro-
cesses subscribe to a group by registering at the closest multicast router. The router
then informs other routers that it has subscribers for the group, but does not have
to inform which or how many. The second assumption is that the coordinators of a
group have access to a consensus oracle running inside that group.

In general lines, the idea in ExtendedMCF is that inter-group message exchange
addresses all coordinators of a group instead of specific ones. Inside each group,
agents agree on exactly which coordinators should actually form coord-quorums for
the group. As the protocol proceeds, the selected coordinators may be replaced to
cope with alleged failures, as long as care is taken to avoid inconsistent decisions.
That is, if a mapping from the group to some value has been possibly learned, the
group can only confirm the value; they cannot propose another. Acceptors and
learners, which receive messages from the coordinators, can be informed on-the-
fly about the composition of coord-quorums. To allow them to distinct different

4.3 Multicoordination and Collision-Fast Paxos 87

coord-quorum versions for the same round, coordinators add a version number to
their messages; acceptors and learners only consider the messages with the highest
version numbers. The following paragraphs details these procedures.

When the leader starts the second phase of a round ¢, it multicasts the “25”
message to the coordinators of each group containing coordquorums. When the
coordinators of some group G hear about round i, by receiving the respective “25”
message, they run consensus to decide on the G;-coordquorums. A deterministic
function over the decision assigns unique identifiers to each coordinator in a quo-
rum, which are used in the “2a” messages sent outside the group.

Once coordinators agree on the G,;-coordquorums, they start monitoring the se-
lected coordinators for failures. If they suspect that more failures than some config-
urable threshold have happened, then they try an internal reconfiguration. That is,
the coordinators execute the following steps:

* The suspicious coordinators broadcast a request to all coordinators in G-
coordquorum not to send any other “2a” message outside the group while
a new set of coordquorums is agreed upon.

* Coordinators reply to this request positively if they have not sent any “2a” mes-
sage yet. If they have already sent such a message, then they reply negatively.
Both replies are sent to all coordinators in the group.

* All coordinators gather the replies for some time and then propose them in a
consensus instance.

The outcome of the consensus instance is then used to identify one of the fol-
lowing situations and define the appropriate line of action.

* For every current coordquorum, there is at least one coordinator that has not
sent any “2a” messages in the current round and that abides by the request for
not doing so. In this case, no mapping from the group to a value was possibly
chosen in the round. Coordinators then deterministically choose a new set of
coordquorums and continue with the round.

* There is at least one G,;-coordquorum P for which every coordinator in P
has already sent a “2a” message in round 7 with the same s-map. Therefore,
the s-map may have been already chosen by the acceptors. Moreover, due to
Assumption 5, this is the only s-map possibly chosen. In this case, the coordi-
nators deterministically choose replacements for the suspected ones, but with
the condition that the already proposed s-map will be their proposal.

* Coordinators cannot determine whether any of the previous situations hold.
In this case they cannot do anything but wait for an external reconfiguration
(round change).

88 Fast Agreement for Groups

In the first alternative, in which the set of coordquorums of the group is changed
and could propose different s-maps, it might happen that “25” messages from be-
fore and after the change combine to have different s-maps accepted, for the same
group. To avoid such a case, “25” messages are extended with a coordquorum ver-
sion number. Acceptors and learners are then modified to consider messages only
from coordquorums with the same version number.

In the third case, if no coordquorum is functional to ensure liveness, the coor-
dinator of the round will eventually give up on waiting for a decision and start a
higher-numbered round, in which the problematic group will be initially mapped to
Nil. This is equivalent to suspecting a coordinator in the original CFPaxos protocol.

4.3.3 Correctness and Liveness

The correctness and liveness properties of CFPaxos were formally proven when the
protocol was introduced []. Proving the same properties for
BasicMCF and ExtendedMCF is a matter of reducing these protocols to CFPaxos.
The reduction is rather simple, as we now show.

To understand the reduction, observe that the idea behind BasicMCF and Extend-
edMCF is to use a set of coordinators forming overlapping quorums to implement
each collision-fast proposer. Hence, an action of a collision-fast proposer in the orig-
inal protocol is implemented by executing the same action in at least a quorum of
the correspondent coordinators in our protocols. In the following discussion, we
refer to each action A of BasicMCF as A, to differentiate it from its homonym in
CFPaxos. ExtendecMCEF is discussed afterwards.

The original Propose action and our extended version Propose differ only in the
number of messages sent by the proposer. Instead of sending a single message to
a collision-fast proposer, the proposer sends the message to all coordinators in its
group. In fact, even in the original protocol, it is up to the proposer to choose to
which coordinators to send its proposals and this choice does not affect the correct-
ness of the protocol, although it could affect liveness. Hence, Propose implements
Propose. The other actions of phase one, Phasela and Phaselb, are exactly the same
in both protocols and, hence, implementations of each other.

Action Phase2Start(c,i) implements action Phase2Start(c,i) by performing the
same sub-actions under the same pre-conditions. More than that, Phase2Start(c,1)
also implements a special case of action Phase2Prepare(c, i) if ¢ is in some coordquo-
rum for round :. To avoid having a flag variable to indicate this special condition in
Phase2Prepare(c,i) as in CFPaxos, we added the sub-actions to Phase2Start(c,1).

Phase2Prepare(c,i), where c is not the creator of i, differs from Phase2Prepare(c, i)
only in that in the first ¢ must be in some G;-coordquorum for some group G, while
in the last ¢ must be in the list of collision-fast proposers of round i. As we men-

4.3 Multicoordination and Collision-Fast Paxos 89

tioned above, for each collision-fast proposer g in CFPaxos, there is a correspond-
ing set of coordinators in G forming coordquorums to implement g. Hence, action
Phase2Prepare(g,1) is implemented by the compositions of actions Phase2Prepare(c, 1)
for every coordinator ¢ in some G;-coordquorum and due to the reception of the
same “2S” message (and Phase2Start(c,1), if c is the creator of round 7). On the one
hand, since all G;-coordquorums overlap (Assumption 5), no two coordquorums
will succeed in executing the action with different “2S” messages and, therefore,
action Phase2Prepare(c,i) will be simulated only once. On the other hand, if no
G,;-coordquorum execute the action, then no Phase2Prepare(c,i) will be simulated,
which does not violate the safety of the protocol. Exactly the same analysis is valid
for actions Phase2a(c,i) and Phase2a(c,1).

Action Phase2b(a, i) differs from Phase2b(a, i) in the sense that the latter requires
a single message (“2a”, ¢, i,{c — v}) from a collision-fast proposers ¢ to accept an
s-map {c — v}, while the first requires similar messages from a quorum of the coor-
dinators implementing c. Because coordquorums overlap, the concatenation of the
actions of receiving a similar message from each coordinator in a coordquorum im-
plements the reception of a single message with the same contents from a collision-
fast proposer in the original protocol. Hence, Phase2b(a, i) in fact implements action
Phase2a(a,i). With a similar argument we conclude that action Learn(l) implements
Learn(l).

It is straightforward to see that ExtendedMCF implements BasicMCF since each
action in BasicMCF is executed in the same way in ExtendendMCF or under more
pre-conditions. In particular, the actions that use “2a” messages, Phase2b(a,i) and
Learn(l) require all such messages to have the same version number in order do be
executed. Since version numbers are only incremented if there is no possibility that
Phase2b and Learn had been executed, it does not happen that the actions execute
twice for the same round, due to the messages sent by the same coordquorum.

To ensure liveness, CFPaxos must be modified in the same way that we did for
Multicoordinated Consensus in Section 3.4.7. That is, the algorithm must have
round creation limited to a leader coordinator, elected through some leader election
oracle. Moreover, to ensure that a learner [eventually learns a complete v-map,
CFPaxos requires that (i)/, a proposer p, a coordinator ¢, a quorum of acceptors
(), and a set S of collision-fast proposers remain alive from some point on, (ii)
a subset of S is trusted by ¢ from some point on, and (iii) p issues a proposal.
These conditions are easily adapted to BasicMCF by replacing the set S by a set of
coordquorums. ExtendedMCF requires the extra condition that coordinators in the
groups with coordquorums in S stop suspecting these coordquorums and, therefore,
do not change their versions from some point in time on.

90 Fast Agreement for Groups

4.4 Generalizing Collision-Fast Rounds

As we have previously noted in this chapter, v-maps are a special kind of c-struct
and, therefore, could be used in any Generalized Consensus Protocol. What makes
v-maps special is the way they are used in CFPaxos and its extensions. That is, by
guaranteeing that no conflicting s-maps are proposed in the same round, it is possi-
ble to agree on a v-map in a fast round without Assumption 3. The same property
may be explored in a Generalized Consensus protocol. In fact, collision-fast rounds
could be integrated into Multicoordinated Paxos as an adaptation of multicoordi-
nated rounds. To fit in Multicoordinated Paxos, which may be used to agree on an
ever growing c-struct while trying to avoid round changes, the collision-fast round
would have to allow agreeing not simply on a mapping from coordinator/group to
a command, but to a growing sequence of commands and/or Nil.

To incorporate collision-fast rounds into Multicoordinated Paxos, the following
behavior is required from the agents.

* When starting a collision-fast round, the coordinator of the round picks a c-
struct and appends a special command chkpt to its end. The command must
conflict with all the other commands. The extended c-struct is then sent to the
acceptors and the coordinators of the round. (If the e operator does not accept
appending the chkpt command, then collision-fast rounds cannot be used.)

* After receiving a c-struct v terminated with chkpt, a coordinator ¢ can propose
extensions to v of the form v e { G — o}, where G is the group that ¢ belongs
to, o has the form ((1, C,),...,(n, C,)), and C, are commands received from
proposers or Nil. The extensions are forwarded to acceptors, learners, and
other coordinators in the round. Whenever ¢ receives a c-struct w e chkpt e
{H — m}, from coordinator in group H # G during a collision-fast round,
it extends its own proposal to have at least as many commands as 7 and
proposes it again.

* When accepting a c-struct, acceptors follow the rules presented next. Two
mappings {G — o} and {H — 7} do not commute iff G = H. Hence, given
two c-structs w e chkpt e {G — o} and w e chkpt ¢ {H — m}:

- If G # H, then their lub equals w e chkpt ¢ {G — o} e {H — 7t};

- If G = H, then if o is a prefix of © or vice versa, then the lub equals
w e chkpt @ {H — &} where 6 is the longest of the sequences. If they are
not prefixes of each other, then the two c-structs are not compatible;

- If G # H, then their glb equals w e chkpt.

- If G = H, then the glb equals we chkpte{H — 6}, where 6 is the longest
common prefix of o and 7.

4.5 Final Remarks and Related Work 91

* Learners learn both from the c-structs received from acceptors and directly
from coordinators. C-structs received from coordinators are used only do
identify Nil commands in the mapped sequence without having to wait for
it to be accepted by an acceptor.

4.5 Final Remarks and Related Work

In this chapter we have discussed the issue of efficiently reaching agreement in a
network organized as groups of agents. This organization reflects, for example,
spread apart data centers connected through dedicated links or the internet, or grid
networks formed by several clusters at different locations. In this scenario, one
would like to minimize the need for a node in one group (cluster, or data center) to
communicate with nodes in other groups.

We have presented an improved version of the Collision-Fast Paxos protocol of
Schmidt et al. | 1, which lets agents in all groups learn the agreed
proposals from all the other groups in two communication steps. Our improvements
to the protocol make it resilient to the failures of coordinators inside each group and
make agents oblivious to the membership of other groups.

Structuring agents in groups has also been considered in the work of Kooh and
Haddad [1. Their hierarchical consensus algorithm recur-
sively agrees on proposals over a multilevel tree of agents. More specifically, in their
protocol each set of agents in a given level of the same branch of the tree constitute
a group. From the leaves to the root, agents in the same group agree on a value to
be their proposal on the upper level, until they have agreed on a single value at the
root of the tree.

There are two main differences between Kooh and Haddad’s work and ours.
First, our protocol is better suited for applications that need to agree on all propos-
als, not just a single one. This characteristic is inherited from CFPaxos. Second, in
Kooh and Haddad’s protocol, agents are replicated using consensus: an instance is
used to agree on each state change. In our approach, we let the coordinators in
each quorum diverge and only use consensus to recover from failures. The price we
pay is in terms of messages sent from the group—since each coordinator may be in
a different state, we must have all of them communicating with the acceptors.

Other works have considered reaching agreement over wide area networks but
focusing on the delay aspect, not on the topology of the network [.

]. That is, they considered a flat group of agents con-
nected by heterogeneous links, some to nearby and some to far nodes. These proto-
cols may reach agreement in two long link message steps, but because they rely on
spontaneous ordering on these links, they will be inefficient when this assumption
does not hold. CFPaxos ensures agreement in two steps in the absence of failures,

92 Fast Agreement for Groups

irrespective to the ordering of messages. Although our extension to CFPaxos does
rely on spontaneous ordering, it does so only inside groups, where we expect this
property to hold often [1.

Chapter 5

Log Service for Transaction Termination

5.1 Log Service

The need to atomically commit transactions in distributed management systems is
recurrent. Briefly, to terminate a distributed transaction, each participating resource
manager votes to either commit or abort it. The transaction outcome is then deter-
mined based on these votes: commit, if all resource managers vote to commit the
transaction, or abort, otherwise. If the vote from each participant is always neces-
sary, however, the procedure may block in the absence of some resource manager.
To avoid this scenario, a weaker version of atomic commitment allows the outcome
to be abort if some participant is suspected to have failed. Commit will be guaran-
teed only if all participants vote to commit the transaction and none is suspected.
This weaker problem is known as non-blocking atomic commitment.

Besides ensuring atomicity, a transaction termination protocol should also guar-
antee the durability of committed transactions. Once committed, the changes done
by a transaction should not be forgotten despite failures. In conventional protocols
this is achieved by having each resource manager stores its updates in a local stable
media before voting. Should a resource manager fail, it can, at recovery time, read
the updates from the local storage and replay them to recover its previous state. A
drawback of this approach is that it couples the availability of the resource manager
with the availability of the server hosting it. In a clustered environment, for exam-
ple, one could recover a resource manager on a different node, should its current
host fail. But obviously, this can only be done if the state of the resource manager is
not stored on the crashed node.

In this chapter, we propose abstracting transaction termination in terms of a
simple but powerful log service. Once the termination is triggered, the transaction
participants submit their votes to the log service using a simple interface. Then they
simply wait until they learn a decision or until they suspect that some other resource

93

94 Log Service for Transaction Termination

manager will not vote. In this case, they simply vote to abort the transaction on the
behalf of the suspected resource manager; the service will ignore all but the first
vote received for each resource manager to determine the transaction’s outcome,
properly ensuring consistency. In addition to storing votes, the service may also
durably store transaction updates, allowing resource managers to be restored after
a crash without relying on their local storage. Besides specifying the service, we
present two implementations of the log service, namely coordinated and uncoordi-
nated, both relying on consensus to provide high availability, although in different
ways. The two approaches abstract the tradeoff “message complexity versus num-
ber of communication steps” in atomic commit protocols, as we discuss in the next
section.

Transaction Termination

Gray and Lamport proposed in a recent work an interesting non-blocking atomic
commitment protocol called Paxos Commit []. In Paxos
Commit, each resource manager uses an instance of Classic Paxos []
to cast its vote, hence its name. By using consensus to vote, Paxos Commit detaches
the termination protocol from the availability of resource managers and transaction
manager (the process that triggers and coordinates the protocol). Hence, failures
are handled by conservatively voting abort on behalf of (supposedly) crashed re-
source managers. Any suspicious resource manager can do so by proposing “abort”
in the consensus in which the suspected resource manager was supposed to cast
its vote, since consensus ensures that all involved parts agree on a single vote
per resource manager in spite of possibly different proposals. Paxos Commit has
the same expected latency as the well-known Two-Phase Commit (2PC) protocol.
In fact, it is a generalization of 2PC that tolerates failures not only of resource
managers, but also of the transaction manager. Compared to Three-Phase Commit
(BPO) [], Paxos Commit has fewer communication steps and
is simpler in case of a coordinator failure.

Besides atomicity, transactions must also be durable if they are used to enforce
strong consistency of applications. That is, once a transaction is committed, its
updates must always be reflected subsequent states of the system, irrespectively to
failures. In the same way that Paxos Commit detached the termination procedure
from the resource managers, we propose to detach the durability. That is, by moving
the information needed for recovery out of resource managers and into the log
service, whose availability can be tuned according to the application needs.

Defining transaction termination in terms of our log service has two strong ad-
vantages. First, transaction termination becomes oblivious to particularities of the
system, taken care of or explored by the log service implementation in a transparent
way. For example, the service could be implemented using message passing, as we

5.1 Log Service 95

illustrate in this thesis, or shared memory, possibly better suited for a multiprocessor
environment. Moreover, if enough nodes can be relied upon not to crash simultane-
ously, then the service could be implemented in main memory only, removing disk
access times from the termination of transactions. Second, the overall availability
of resource managers is improved by using a highly available implementation of the
log service. As mentioned earlier, the service can be used to migrate crashed or slow
resource managers to functional and more dependable hosts. As a consequence,
resource managers may choose to asynchronously store their state locally for later
recovery or rely solely on the state kept at the log service.

Service Implementations

The two implementations of the log service that we present here rely on consensus
to terminate transactions atomically and to durably store the updates of commit-
ted transactions. In the first, uncoordinated, voting is completely distributed (this
approach abstracts Paxos Commit). In the second, coordinated, voting is central-
ized, managed by a coordinating process. This difference has performance impli-
cations on both the termination of transactions and on the recovery of resource
managers. In the following sections we provide and in-depth presentation of both
approaches. As we mentioned before, the two approaches abstract the tradeoff
“message complexity versus number of communication steps” in atomic commit pro-
tocols. Our coordinated implementation has linear message complexity, similarly to
3PC, but needs 5 steps to terminate a transaction; the uncoordinated approach, sim-
ilarly to Paxos Commit and other proposals (for example, [,

1), reduces the number of steps to 3, at the expense of a
quadratic message complexity.

We have experimentally evaluated the two implementations and verified, in the
tested scenarios, that the coordinated solution outperforms the uncoordinated one
by 8x when transactions are short, what typically happens in performance-critical
systems. The performance gain is mainly due to batching of concurrently issued
votes by the coordinator, saving on network and disk utilization.

In the following sections we formally define non-blocking atomic commitment
and the durability property. In Section 5.3 we present the log service and show
how it is used to terminate transactions. In Section 5.4 we discuss the building
blocks used in the implementations, presented in Sections 5.5 and 5.6. We compare
the two implementations among them and to other solutions in Section 5.7, and
conclude the chapter with some final remarks in Section 5.8. Complete specs and
correctness proofs can be found in the Appendix B.

96 Log Service for Transaction Termination

5.2 Problem statement

A resource manager (RM) is the owner of some resource that can be read or written,
such as a file, a region of memory, or a table in a relational database. We define
RMs not as agents, but as roles that can be “incarnated” by different processes at
different points in time. We assume the availability of infinitely many agents and,
therefore, that there is always an agent to incarnate an RM. This model allows an
RM to be incarnated at an operational host, should its previous host crash, without
waiting for the crashed node to recover. Hence, RMs have crash-recovery failure
pattern.

A distributed transaction is a partially ordered set of read and write operations
executed by RMs on their resources. An RM is a participant of transactions for
which it has been requested to execute operations. Each transaction is managed by
a transaction manager (TM), another role in our model. To terminate a transaction,
the TM asks its participants to agree on committing or aborting the transaction
through a non-blocking atomic commit (NBAC) protocol. An RM can only vote to
commit a transaction after receiving a request from the TM along with the complete
list of participants of the transaction. Abort votes, however, may be sent by RMs at
any time, even before receiving the request and the participant’s list.

Formally, NBAC is defined by the following properties.

Validity If a participant decides to commit a transaction, then all participants voted
to commit the transaction.

Agreement No two participants decide differently.

Nontriviality If all participants vote to commit the transaction and none is sus-
pected of failing throughout the execution of the protocol, then the decision
is commit.

Termination All non-faulty participants eventually decide.

Nontriviality implies that RMs can be “suspected” of failing. The only assump-
tion we make about failure detection is that if an RM fails (actually, the agent in-
carnating it), then it will eventually be suspected by the other agents. This property
is similar to the eventual weak completeness property of Chandra and Toueg’s fail-
ure detectors [], discussed in Section 2.1. Therefore, RMs
may be incorrectly suspected to have failed and transactions unnecessarily aborted.
TM failures are handled with RM unilateral aborts.

NBAC defines proper transaction termination, but says nothing about durability,
i.e., on making the effects of committed transaction last in spite of crashes of RMs.
We define durability as follows [1:

5.3 The Log Service 97

Durability After a transaction commits, the changes it has made to the database
persist, even in the presence of agent failures.

Durability can be ensured, for example, by reinitializing the database and re-
playing the updates of committed transaction in the commit order. RMs can store
updates on a local stable storage, as traditionally done in database systems, or on
an external and possibly replicated media to improve availability.

5.3 The Log Service

In this section we specify the log service and show how resource managers inter-
act with it to atomically terminate transactions and recover crashed resource man-
agers. We show how these behaviors can be implemented in a shared-nothing asyn-
chronous distributed system in Sections 5.4-5.6. For simplicity we assume that,
except for action Terminate of Algorithm 14, all actions presented in the chapter
are performed atomically. The extended specification that we give in Appendix B is
defined with atomic actions only.

5.3.1 The Log Service Specification

It is easier to understand the log service specification by seeing it as an always avail-
able service, accessed by the RMs through remote calls. The service manipulates the
following five data structures:

V' The set of all votes received by the service. Votes are sequences of the form
(rm, t, tset, vote, update), read as “rm voted wvote on transaction ¢, with up-
dates update, if any (i.e., the empty set, if vote = ABORT)”. tset is the possibly
incomplete list of RMs involved in ¢. Initially, V = {}.

T The partially ordered set (S, X), where S is the set of committed transactions and
= is a partial order on S. For any two transactions t;,t, € S whose commits
are not seen as overlapping by the log service, either ¢, < ¢, or ¢, < t;; we say
that such transactions are “non-concurrent”. For simplicity we represent 7' as
a sequence of sets of committed transactions such that, given two sets 7]
and T'[j] in T, i < j implies that for all transactions ¢t € T'[i] and u € T[],
t =X w. Initially, T = ().

C' The set of committing transactions, that is, the set of non-terminated transactions
for which votes have been issued. Initially, C' = {}.

98 Log Service for Transaction Termination

LastC' Given the last transaction to have been committed, ¢, LastC' contains the
subset of C' will all transactions whose votes were received while ¢ was being
terminated (their terminations were concurrent to t). Initially, LastC' = {}.

R A map from RMs to the agents currently “incarnating" them. An RM is mapped
to L (not a valid agent) if it has never been incarnated. Initially, all RMs are
mapped to L.

The first part of Algorithm 14 initializes the data structures and defines the op-
erators Outcome, IsInvolved, and Updates, and the action Vote.

Outcome(t) evaluates to the outcome of transaction ¢: ABORT, if at least one vote
for t is ABorT; ComMIT, if all votes are present and equal ComMiT; and UNDEFINED,
if all known votes for ¢ are CommIT but there are missing votes, which could turn
out to be of either kind.

IsInvolved(t,rm) evaluates to TRUE if rm is a participant of ¢, i.e., if rm is in the
list of participants (tset) of any vote for ¢ already received by the service. Because
ABORT votes may not carry the complete participants’ list, they are not enough to
give negative answers. That is, if only ABORT votes are known and none has rm
in the tset field, then IsInvolved(t,rm) evaluates to UNKNOWN. On the contrary, if a
CommiIT vote is known and rm is not in the tset field, then the function evaluates to
FALSE.

Vote(v) adds vote v to V. A vote is added only if no other vote for the same
resource manager and transaction is already in V. This ensures that, if conflict-
ing votes are issued by mistake for the same participant, then only one vote per
participant is considered.

Updates(rm) evaluates to the sequence of sets of updates performed by resource
manager rm, partially ordered accordingly to T'. The evaluation is done by recur-
sively iterating over the sets of committed transactions to find the ones in which rm
took part and with which updates.

5.3.2 Termination and Recovery

The second part of Algorithm 14 defines the actions Incarnate and Terminate.
Incarnate(rm, pid) is used by agent pid to incarnate resource manager rm. First,
the agent sets R[rm] to its own identifier, pid. Second, it evaluates Updates, de-
scribed above, to get the updates executed by the previous incarnations of rm.
Third, pid scans the updates from the first to the last set, applying all updates in
one set before those in the next set to its state; updates in the same set do not have
to be ordered. The action ends with pid incarnating rm, with a state equal to the

5.3 The Log Service 99

Algorithm 14 Log service specification
1: Initially:

20 V0 < The history of votes.
32 T«) < Sequence of sets of committed trans.
¢ C<0 < Set of concurrent trans.
s: LastC <0 4 Set of trans. concurrent to the last committed.
¢ Vre RM,R[r]< L 4 Processes incarnating RMs.

71 Outcome(t) =

s: 1F3(_,t,_,ABORT,_) € V < Any ABORTs?
9 THEN ABORT

10: ELSE IF A(_, t, tset, CoMmMIT,_) € V : Vp € tset :(p, t,_,CommiT,_) € V <4 All ComMITS?
11: THEN COMMIT

128 ELSE UNDEFINED < Not enough commits?

13: IsInvolved(t,rm) =

4 1R 3, ¢, tset,_,_) € V :rm € tset < Is rm in any list?
1. THEN TRUE

6. ELSE IF I(_,¢,_,v,_) € V : v =COMMIT < Is tset a complete list?
170 THEN FALSE

180 ELSE UNKNOWN < Not enough information.

A

19: Vote({rm, t, tset, vote, update))

200 IF Outcome(t) = UNDEFINED < If t has not terminated yet
21 THEN C « C U {t} <additto C.
2: IF 03(rm,t,_,_,_) € V THEN < If rm has not voted for t yet
23: currState «— Outcome(t) < The current state (ABORT or UNDEFINED).
24: V — VU {{rm,t, tset, vote, update)} < Store this vote and check. . .

25: 1F (currState = UNDEFINED) A (Outcome(t) = COMMIT) THEN 4...if the state changed.
26: IF t € LastC < If t can be added to the last set...
27: THEN T — T & t <...do it;
28! ELSE

20: T — Te{t} < otherwise, add it to a new set
30: LastC — C <4 with a new LastC.

31: C «— C\{#}
s2: Updates(rm) =
330 LET Upd(i) =

34 IF 4 =0 THEN () 4 Recursion end.
35: ELSE 4 Get updates and recurse.
36: Upd(i— 1) e{upd : (rm,t,_,CommiT, upd) € V : At € T[i] < ¢t committed and

AlsInvolved(rm, t)} < involves rm.
37. in Upd(Len(T)) < Return updates for rm

previous incarnation. pid will accept and process new transactions as rm until it
crashes or another agent incarnates rm (i.e., pid no longer equals R[rm]). If more
than one agent try to incarnate rm, a quick succession of incarnations will happen,

100 Log Service for Transaction Termination

Algorithm 14 Log service specification (continued)
ss: Incarnate(rm, pid) =
39: R[rm] < pid

20: updates «— Updates(rm) < Get committed state.
41: FOR i =1 to Len(updates) < For each set of committed transactions...
42: apply updates in updates[i] 4...apply it to the database.
430 Terminate(rm, t, tset, vote, upd) =

44: Vote({rm,t, tset, vote, upd)) < Vote for t and wait. . .
4s: WHILE Qutcome(t, rm) = UNDEFINED

46: waIT (Outcome(t, rm) 7 UNDEFINED) V (suspect r € tset)

47: IF suspected r € tset < If suspects that r has crashed. . .
48: THEN Vote({(r, t, tset, Abort,D)) 4...vote on its behalf.

49: IF Outcome(t,rm) = ABORT THEN abort ¢ in the database
so: ELSE apply upd to database

but only one will remain incarnated.

Terminate is used by resource managers (the process incarnating them) to trigger
or join the termination of transactions in which they participate. To terminate ¢, a
resource manager rm executes Terminate ((rm, t, tset, vote, upd)), where tset is the
set of resource managers known by rm to be participants of ¢, and wvote is either
ABORT or ComMiIT, depending on whether rm is willing to commit the transaction or
not. If vote equals CommiT, then upd contains the updates performed by rm in t. If
vote equals ABORT, upd is the empty set.

After casting its vote, mm waits until it learns #’s outcome. While waiting, rm
monitors the other resource managers in t¢set, also involved in ¢. If rm suspects that
some participant crashed, it votes ABORT on its behalf. After learning that ¢ commit-
ted, rm will apply its updates and release the related locks, if locking is used. If rm
learns that ¢ aborted, it locally aborts the transaction. Updates are made durable
by the log service. We assume that the execution of Terminate is not necessarily an
atomic operation, allowing multiple resource managers to vote in parallel and the
same resource manager to terminate distinct transactions in parallel, if its schedul-
ing model allows it.

5.3.3 Correctness

Termination using our log service provably solves NBAC and recovery through the
Incarnate action provably ensures the durability property. Below we present a sketch
of these proofs. In Appendix B we present detailed proofs of these properties.

Fact 1 For any resource manager rm and transaction ¢, there is at most one
element (rm, t, tset,v,u) in V, and only if rm is a participant of transaction ¢.

The first part of Fact 1 is implied by lines 22 and 24 of the algorithm, which for-

5.4 From the specification to implementations 101

bid the inclusion of votes in V' for the same pair (transaction,RM). The second part
is implied by (i)the definition of Terminate, (ii)the assumption that RMs get accu-
rate information, although possibly incomplete, of which RMs participate in a given
transaction, and (iii) the fact that RMs only vote in transactions they participate.

Fact 2 If Outcome(t) evaluates to CoMmMIT (respectively, ABORT) at any given time,
then it will evaluate to CommiT (respectively, ABORT) at any later time.

Because votes are not removed from V', once the condition of line 8 is true, it
remains true no matter what other votes are added to V. For the same reason, once
votes from all participants are received and are all for committing the transaction,
the condition of line 10 becomes true and remains like that. Recall that the tset of
any commit vote has the complete set of participants of the respective transaction.

Fact 2 implies AC-Validity and Facts 1 and 2 imply AC-Agreement.

If no participant of a transaction is suspected and all vote CommiT, then only
CoMMIT votes can be added to V. In this case, the condition to abort the transaction,
on line 8, will never be true and ComwmiT is the only possible outcome for such a
transaction, satisfying the AC-Non-Triviality property.

Finally, once asked to vote, each participant either votes or is suspected and
has a vote issued on its behalf by a non-faulty participant. Hence, one vote for each
participant is eventually cast in the log service, and eventually either the abort or the
commit condition becomes true. The protocol therefore satisfies the AC-Termination
property.

The state of resource managers is changed by applying deterministic updates
from write transactions. Hence, given two copies of a resource manager in the
same initial state, applying the same sequence of updates leads them to the same
final state. If two transactions committed concurrently, then they do not interfere
with each other and, even if commuting the order in which they are applied to
the database, the final state will be still the same. The recovery procedure builds
a sequence with all updates performed by the recovering resource manager in its
previous incarnations. Updates are then replayed in an order compatible with the
commit order of transactions. That is, for any two transactions ¢; and t,, if ¢, had
its termination requested after ¢, had terminated, then the updates of ¢, are applied
before those of t,. If the termination of ¢, started before ¢, had terminated, then their
updates might be applied in any order; in any case, the transactions are commutable
and the same final state will be reached, hence, ensuring the durability property.

5.4 From the specification to implementations
We have defined our log service abstractly as a state machine in terms of some

variables and atomic actions. To implement this abstraction in a distributed way,
we assume that agents communicate via message passing over unreliable but fair

102 Log Service for Transaction Termination

communication channels. We also assume that agents have access to a consensus
oracle. Consensus instances are uniquely identified by a natural number. We use
propose(i, v) to denote the proposition of value v in the consensus instance ¢, and
decide(i, v) to denote the learning of decision v of instance 1.

In special, the coordinated implementation of the log service assumes a leader-
election oracle like []. Participants use this oracle to deter-
mine the current coordinator. The leader-election oracle guarantees that eventually
all participants will elect the same non-faulty agent as the leader. Obviously, this can
only be ensured if there is at least one agent that eventually remains operational
“forever”. In practical terms, “forever” is reduced to “long enough to accomplish
some useful computation”, e.g., deciding on a transaction’s outcome.

5.5 Coordinated Implementation

5.5.1 Overview

The coordinated implementation is named after a coordinator agent that serves as
the interface for the log service to RMs. Instead of simply accessing the service, RMs
exchange messages with the coordinator to implement each action in the service’s
specification. To vote in a transactions, RMs send a vote message to the coordina-
tor, which ensures that votes become durable by proposing them in a sequence of
consensus instances until they are decided in some instance, at which point they
are durable. The coordinator analyzes durable votes to determine transactions’ out-
comes and inform the RMs, which then complete the implementation of action VOTE.
To amortize the cost of termination of each transaction, the coordinator batches as
many votes as possible in the proposal of each consensus instance. If an RM has
enough local information to implement some action without waiting for the coor-
dinator’s reply, then it does so to improve performance. One such example is the
ability to abort a transaction locally when the RMs’ vote itself is ABORT.

Multiple processes capable of coordinating the implementation run in parallel
and, along with the RMs, they use the leader-election oracle to elect the effective
coordinator. The elected coordinator is the one to which RMs send their votes and
to which non-elected coordinators forward all votes that they may receive from mis-
taken RMs. Because all coordinators decide on the transactions’ outcome based on
the same sequence of consensus instances, they all take the same decisions. Hence,
safety is not violated even if several processes become coordinator simultaneously.
Liveness, on the other hand, may be violated in this case, because coordinators could
jeopardize each other’s attempts to reach agreement. Eventually the leader-election
oracle ensures that a single coordinator exists, and liveness is ensured.

Incarnating a given resource manager happens in a similar way: the process try-

5.5 Coordinated Implementation 103

ing to incarnate the RM sends a special message to the coordinator, which proposes
the change in a consensus instance. Once an instance decides on an incarnation
change, all next instances consider the newly incarnated resource manager. The de-
cision is also informed to all processes incarnating some RM so that they can identify
if they have been replaced.

5.5.2 The Algorithm

The coordinated implementation is decomposed in two parts. The first part is a set
of “stubs” for the actions and operators used by RMs as defined in Algorithm 14.
From the RMs point of view, these replacement stubs implement the original ser-
vice definitions, but using local data structures and exchanging messages with the
coordinator to simulate their specified behavior. The second part is coordinator’s
protocol, which the stubs in the first part interact to implement the log service spec-
ification.

RM Stubs

Algorithm 15 defines the stubs. The first part of the algorithm initializes the three
data structures kept by an agent pid incarnating rm.

outcome the local view of function Outcome;
mylInc the number of rm’s incarnation.

rm2pid a flag indicating if pid is currently incarnating rm. Along with the previous
variable, this is used to implement implement R[rm] locally.

Observe that Terminate does not have a stub, and executes as in the service
specification.

The Incarnate stub sends a “Recover” message to the coordinator requesting it
to change the agent incarnating RM rm for agent pid, and waits for a confirmation
that the change was performed. The confirmation carries the updates executed by
previous incarnations and the incarnation number of rm. R[rm] = pid evaluates
to TRUE until the stub learns a bigger incarnation number, indicating that another
agent took over the the role of rm. As we show below, the incarnation number is also
sent to the coordinator along with the votes, allowing the coordinator to cope with
multiple agents believing to be incarnating the same RM. To account for coordinator
crashes, every time a process executes Incarnate, it does so with a different pid.

Vote forwards the vote to the coordinator. As an optimization, if the vote is for
ABORT then the stub updates the transaction outcome before sending the vote to the

104 Log Service for Transaction Termination

Algorithm 15 Stubs to implement Algorithm 14
1:Initially:

2: Vt, outcome[t] < UNDEFINED <4 All transactions are undecided.
3: mylnc «— L <4 Have not incarnated yet.
4 rm2pid «— L < Ditto.

. A
s:Incarnate(rm, pid) =
6. send (“Recover”, pid, rm) to coordinator

7: WAIT received (“Recovered”, rm, upd, inc)
8: mylnc < inc

9: rm2pid «— pid < pid has incarnated rm.
10: FOR? =1 to Len(upd) < For each set of committed transactions...
1: apply updates in upd[i] 4...apply it to the database.
12:R[rm]

13 return rm2pid < Either my own pid or L.
w:Vote((rm, t, tset, vote, upd)) =

15: IF vote = ABORT THEN outcome[t] < ABORT < Quickly abort.

16: send (“Vote”, rm, mylnc, t, tset, vote, upd) to coordinator

17:0utcome(t) =
18: return outcome[t]

19:when received (“Terminated”, t, out) < Learn decision.
20: outcome[t] « out < Learn t’s outcome.
21:when receive (“Incarnate”, rm, newlnc) < Was replaced.
22: IF newlnc > mylnc THEN rm2pid «— L < No longer incarnates rm.

coordinator. This is possible because either the vote will be seen by the coordinator
or another resource manager votes ABORT on its behalf and, in either case, the
transaction is indeed aborted, or the resource manager has been reincarnated and
this local abortion has no influence on future transactions.

The when clauses at the end of the algorithm update the local data structures
when the outcome of a transaction becomes known and when another agent has
taken over the RM being incarnated. These actions execute fairly and atomically
once their conditions become TRUE.

Coordinator

Algorithm 16 is a set of handlers for message delivery and consensus decision
events. All agents that could become the elected coordinator run the algorithm
and update their data structures accordingly. However, to minimize network us-
age, only agents that believe themselves to be the elected coordinator actually send
messages. The data structures for a coordinator ¢ are the following:

T[c] Implements T in c. Besides the votes of committed transactions, it also keeps
incarnation requests sent by resource managers. Initially ().

5.5 Coordinated Implementation 105

V[ec] Implements V in ¢, as in the specification.
B The set of votes received but not yet treated by the coordinator. Initially empty.

1 The coordinator executes a series of consensus instances, and ¢ is the identifier of
the instance the coordinator is waiting to terminate.

recSet The set of reincarnation requests awaiting to be decided.

R[rm] is not explicitly kept in any data structure, but lies implicit in the sub-
sequence of “Incarnate” votes in T'[c]: R[rm] equals the agent in the last vote of
type “Incarnate” in T'[c¢] (lines 7-9).

When “Vote” messages are received by the coordinator, they are added to B
to be proposed in the next consensus instance (lines 10-12). Once B is no longer
empty, the coordinator proposes it on instance ¢ (lines 13-14). For simplicity, we
assume that B always fits in a consensus proposal. In a consensus implementation
in which proposals have bounded sizes, B would have to be split and proposed in
several instances.

The coordinator waits for the decision of instance 7 and postpones the learning
of decisions of later instances. Once the coordinator learns the decision D (line 15),
it first removes it from B (line 16) and then processes each of its elements (lines
17-32). If the element is a vote then the coordinator determines its final meaning
before adding it to V'[c]. The final meaning of a vote is ABoRT if its issuer no longer
equals R[rm]; otherwise, it is the issuer’s proposed vote. If the vote caused the
transaction to be terminated, that is, it turned an Undefined outcome into either
ComMIT or ABORT, then the coordinator adds the transaction to 7'[¢] (lines 25-27),
which ensures that upon recovery the new rm will learn all committed transactions.
Next, the coordinator warns all known participants with a “Terminated” message
(lines 28 and 30). The “Incarnate” special votes, explained in the next paragraph,
are handled after all the other votes (lines 31-32). The last step in the action moves
the coordinator to the next consensus instance (line 33).

(“Recover”, pid, rm) messages asking the coordinator to change the agent incar-
nating rm to pid have a simple handling (lines 34-36): upon the arrival of such a
message, the coordinator creates a special vote (“Incarnate”, pid, rm) and adds it
to B (line 36). As mentioned in the previous paragraph, (“Incarnate”, pid, rm) is
appended to 7T'[c] after all the normal votes decided have been processed, meaning
that R[rm] has been set to pid until another “Incarnate” vote overwrites it. The
coordinator monitors 7'[c] to learn when R[rm] changes to pid (lines 35, 37-38).
When it happens, the coordinator gathers all the updates performed by rm (lines
39-40) and the number of its new incarnation (line 41), and sends this information

106 Log Service for Transaction Termination

Algorithm 16 Coordinator’s protocol

1:

2.

o U~ W

102
112

121

132
142

15:

17:
18:

192
20
212

22:
23.
24:
252
26.
27.
28:
291
30.
31:
32:

33.

Initialization:
T[c]<0 < The sequence of terminated transactions.
Vic] <0 < The set of durable votes.
B0 < Votes to be broadcast.
10 < Current consensus instance.
recSet «— 0 4 Reincarnation transactions.
R[rm]
rrm «— r =(“Incarnate”, pid,rm) € T[c] : < Pick the reincarnation request for rm
Vr' =(“Incarnate”, pid’,rm) € T[c]l,r >’ < that was last received.

return rrm[2]

when receive (“Vote”, rm, pid, t, tset, vote, upd)
if-3(rm,_,t,_,_,_) € B

B «— BU{{rm, pid, t, tset, vote, upd)} < Only the first vote is considered.
when B #0
propose(i, B) < Propose B on instance 1.
when decide(i, D) < Decided D on instance 1.
B<— B\D <4 Remove from next proposals.
Tlcl < T[c]e0 < New set of transactions.

for all(rm, pid, t, tset, vote, upd) € D
IF —3{(rm,_, t,_,_,_) € V[c]

THEN
prevState «— Qutcome(t)
IF R[rm] # pid < If rm has been reincarnated
THEN V[c] « V[c]U (rm,t, tset, ABORT, D) < turn the vote into ABORT
ELSE V[c] « V[c]U{{rm,t, tset, vote, upd)} < else, add it to the set of votes.
IF (prevState = UNDEFINED) A (OQutcome(t) = COMMIT) < If vote lead to commit of t
THEN
Tlcl— T[c]®t <add it to T[c]
Vp € tset, send message (“Terminated”, t, Outcome(t)) to p < and warn participants.
ELSE IF vote = ABORT < If lead to abortion of t
THEN Vp € tset, send message (“Terminated”, t, ABORT) to p < warn known participants.
FOR ALL d =(“Incarnate”,_,_) € D < Process “Incarnate” votes.
T[c] < T[c]ed
1e—1+1 < Process the next batch.

to pid, so it can start playing rm (line 42); the other resource managers are warned
about the change in the last step of the algorithm (line 43).

Traditionally, RMs write their logs on disk before voting. Even when using the

log service, RMs may still write locally for a number of reasons, such as (i)recovery
speedup, because reading locally is faster than reading remotely, and (ii)minimizing
network usage, by sending just empty updates to the service. If the RM does not
write its updates locally, then it can resort to the coordinator to obtain them. In this

5.6 Uncoordinated Implementation 107

Algorithm 16 Coordinator’s protocol (Continued)

34: when receive (“Recover”, pid, rm) < Upon request to recover
52 recSet « recSet| J(“Incarnate”, pid, rm) < remember the request
ss: B« B| J(“Incarnate”, pid, rm) <and add it to B.

s7. when 3 ¢, =(“Incarnate”, pid, rm) € recSet : t;,. € T[c] < Once a reincarnation terminates
s8: recSet « recSet \ {t;,.}

;. V™M e—{e={(rm,t,_,_,_) € V[c]: < determine rm’s previous updates
(Outcome(t) = ComMIT) A (£ <7(e] tine)}
490: U™ —{(u:{rm,_,_,u) € V'), < and order them as in T.

V(rm, tl;—: U1>, <Tm: tZ:—; ’LL2> € an:
tl <T[c] tz = U <U7'7n 1,[,2}

q: inc<| Old |: < Determine the incarnation number,
Old = {r =(“Incarnate”,_,rm) € T : r <p(“Incarnate”, pid, rm)}

42: send (“Recovered”, rm, U™ inc) to pid < tell process pid

43: send (“Incarnate”, rm,inc) to all resource managers < and the other RMs.

case, the coordinator scans the decisions of all consensus instances to determine the
updates of committed transactions concerning the RM when recovering. Since all
coordinators maintain the same state, any can be safely contacted.

5.6 Uncoordinated Implementation

5.6.1 Overview

The uncoordinated implementation is based on the Paxos Commit protocol. The
main purpose of this implementation is to save time by not having the votes sent to
the service through a coordinator. Instead, each vote is cast in a distinct consensus
instance.

When an RM is first contacted by a TM in the context of a transaction, besides
executing the requested operation the RM also names the consensus instance in
which it will vote to terminate the transaction. The instances are sequentially taken
from a per-RM pool and informed to the TM along with the reply to the first opera-
tion. The TM informs the named instances to all participants along with its commit
request so that they know which instance to use to learn votes and to vote on behalf
of each other, should they need.

Besides voting, RMs also use consensus instances to propose changes of incar-
nations. Because RMs cannot rely on a total order of INCARNATE requests, as in the
coordinated implementation, the protocol must rely on some other assumption to
limit the scope of each incarnation. The assumption we make is that at most k
transactions are executed in parallel by each RM (multiprogramming level).

108 Log Service for Transaction Termination

Let p be a process incarnating RM rm and ¢ a process not incarnating any RM.
If ¢ suspects p to have crashed and wants to takeover the role of rm, it proposes
the change in the smallest consensus instance in rm’s pool that ¢ believes not to be
decided yet. ¢ repeats this step with subsequent instances until one of them decides
on the INCARNATE request.

When ¢’s proposal to incarnate rm is decided, ¢ still needs to ensure that all
consensus instances in which p had possibly voted have been decided. Otherwise,
g might attribute one of such instances to a transaction different from the one p
had originally done. There are at most k£ — 1 such transactions. That is, if the
incarnation change was decided in instance ¢, then ¢ knows that p can only have
voted on instances up to ¢ + k£ — 1, and ¢’s incarnation effectively starts at instance
i + k. To avoid blocking, ¢ conservatively votes ABORT on all instances in the range
[i+1,i4+k].

To recover the state of p, ¢ must recover the updates sent along with votes for
all instances smaller than ¢. These updates are learned along the the decisions of
such instances and applied to the database.

5.6.2 Algorithm

Algorithm 17 defines the stubs implementing Algorithm 14 for an agent pid incar-
nating an RM rm. The agent keeps three variables:

V[rm] The set of votes that rm has received.
commitCounter[rm] A counter of committed transactions involving rm.

rm2pid A flag indicating if the agent is incarnating rm and used to locally evaluate
R[rm]. Tt is either pid, if pid is incarnating rm, or 1, otherwise.

Transaction Termination

The Vote stub proposes rm’s vote for transaction ¢ on consensus instance inst(rm, t).
If the rm is voting on its own behalf, the current consensus instance is determined
locally. With the vote, the resource manager proposes also the number of trans-
actions already committed, commitCounter. This information is used later during
recovery, as we explain below.

To vote for another resource manager rm’, rm must know the instance that rm’
would use to vote in ¢t. This information may be transmitted by the transaction
manager along with its commit request, since rm will only vote for rm’ if it has

5.6 Uncoordinated Implementation 109

Algorithm 17 Uncoordinated implementation with stubs for Algorithm 14 (MPL k)
1: Initialization

20 V[rm] <0 < Votes I have seen.
32 commitCounter < 0 <4 How many transactions I committed.
4 rm2pid «— L < Have not incarnated yet.
s: R[rm]

6: return rm2pid < Either my own pid or L.

7: OUuTCOME(t)

s: IF 3(_,t,_,ABORT,_) € V[rm] < Any ABORTs?
9 THEN ABORT
10: ELSE IF 3(_, ¢, tset,_,_) € V[rm] : Vs € tset : <4 All ComMITS?

(s, t, tset,CommIT,_) € V[rm]
118 THEN COMMIT

12: ELSE UNDEFINED < Neither one nor the other
13: VoTE({rm, t, tset, vote, update[rm]))

14: propose(inst(rm, t), (rm, t, tset, vote, upd, Len(T[rm]))) < Vote + number of committed.

15: when decide(j, d) < [Decided on instance j.]

16: IF d = (r, t, tset, vote, upd, cn)), rm € tset

17: THEN V[rm] < V[rm]U{(r,t, tset, vote, upd)}

180 ELSE IF d = (INCARNATE,_, 7'), r # rm <4 Someone else was substituted.
190 THEN V[rm] < V[rm]U{{(r,t,{r,rm}, ABorT, D)}, inst(rm,t) =j < Make d an ABORT vote.
200 ELSE IF d = (INCARNATE, pid’, rm), pid # pid’ <4 rm has been reincarnated,
21: THEN rm2pid <« L 450 give it up.

voted CommiT for itself and, hence, received the commit request from the transac-
tion manager. The transaction manager, in turn, collects this information from the
resource managers during the execution of the transactions.

The decision of a consensus instance j is learned by rm if it is one of its instances
or one associated to a transaction in which rm is participant. This decision can be
of three types: (i) a vote, in which case it is added to V[rm]; (ii) a change of
incarnation of another resource manager, in which case it is added to V [rm] as an
ABORT vote; and (iii) a change of rm’s incarnation to process pid’, in which case the
process pid # pid’ currently incarnating learns that its incarnation lasts only until
instance j + k. The when clause that processes the decisions is only activated once
the resource manager has completed recovery.

Recovering from Failures

The Incarnate stub determines the updates performed by previous incarnations and
in which instance the new incarnation starts. The procedure consists of three steps:
in the first step, pid (i.e., the process incarnating rm) proposes (“Incarnate”, pid, rm)

110

Log Service for Transaction Termination

Algorithm 17 Uncoordinated implementation with stubs for Algorithm 14 (MPL k)
(Continued)

22;
230
241
252
26.
27.

28.
29:
30.

31:
32:

332

34:
35.

36.
37.

38.
39:
40:

412
422
432

44:
45:
46:

47:
48:
49:
50.

51.

52:

Incarnate(rm)

tranSet «—
10
while TRUE
propose(i, (“Incarnate”, pid, rm))
wAIT decide(7, d)
1IF d = (“Incarnate”, pid, rm)
THEN
pidRM < pid
break
ELSE
tranSet — tranSet | J{d}
1—1+1
FORj «— 1.k—1
propose(i + j, (rm, t,{rm}, ABorT, 0, 0))
WAIT decide(i + 7, d)
1IF d = (“Incarnate”’,_, rm)
THEN
rm2pid «— L
return ()
tranSet «— tranSet | J{d}
FOR ALL (rm, t, [, v, u, cn) € tranSet

1F —3(p’, t,I',ABORT, D, cn’) € V[rm]
THEN

FOR ALL p’ € [,-3(p’,t,1,v", v/, cn’) € V[rm]

propose(inst(p’, t), (p’, t, 1, ABORT, D, 0))
walIT until decide(inst(p’, t), d)

VIrm] « V[rm]|J{d}

1IF d = (p’,t,_,ABORT,_,_) THEN break

s Upy,) -

er, = (rm, ty, I, Vi, ug, cng) € V[rm],

Vp € Iy, Ip, ty, I, Commit, u,,) € V[rm],

Ulrm] < (uy,...

Vi <j,cn; <cn,

return U[rm]

<4 Assume that 0 is the first instance identifier.

< Vote until incarnation changes,

4 Reincarnated
< Stop the first iteration.

< and then, for k — 1 possibly open instances,
< vote to close them.

< Someone else is recovering.

< Give up the resource manager
< and stop looking for updates.

< Close all of those transactions:
< If t was not aborted,

< make sure to terminate it
< voting for others if needed.

< Stop on ABORT.
< Now order updates of known transactions

< that committed

< in commit order.

in its first consensus instance and until such a value is decided in an instance 7, at
which point pid becomes the incarnation of rm for transactions associated with
consensus instances ¢ + k, until displaced by another process. The second step ter-
minates the transactions associated with instances i + 1 to ¢ + k£ — 1, belonging
to the incarnations being replaced. The third step determines the outcome of all
transactions associated with instances smaller than 7 + k.

5.7 Evaluation 111

The protocol terminates by gathering the updates of committed transactions in
the sequence U[rm]. Elements in U[rm] are ordered according to the commit
counter in each vote, making it consistent with the commit order of non-concurrent
transactions. Algorithm 17 does not keep the 7' data structure nor any abridged
version of it; the order of committed transactions is forgotten by the resource man-
agers once their updates are applied. Upon recovery, U[rm] is created and kept just
until the recovery is terminated.

To improve performance, implementations should use checkpoints and reduce
the number of consensus instances in which resource managers must propose. Most
of the remaining instances can run in parallel to reduce the recovery latency.

5.7 Evaluation

In this section we compare the coordinated implementation of the log service with
other relevant commit protocols in the literature. In Section 5.7.1 we give a brief
overview of such approaches, compare them in terms of communication steps, num-
ber of messages, and resilience. In Section 5.7.2, we experimentally compare the
coordinated implementation with an uncoordinated one. The uncoordinated imple-
mentation is based on Paxos Commit [].

5.7.1 Analytical Evaluation

In the 2-Phase Commit protocol (2PC) [], the TM asks RMs to vote, col-
lects their votes, decides on the transaction’s outcome, and informs the RMs. The
protocol therefore requires three communication steps and sends up to 3 R mes-
sages, where R is the number of RMs. If the TM crashes during the second step, the
protocol blocks until the process is recovered.

In the commit protocol of Guerraoui et al. [] (GLS), the
RMs do not centralize the decision on the TM: on the second step, they exchange
their votes and, on the third step, they communicate their decisions to each other,
using a total of N + 2/N? messages—to simplify the analysis, we count messages
sent by processes to themselves. Hence, in good runs, all RMs see the decision after
three communication steps but, in case of suspicions of failures, they must resort
to a consensus instance to ensure correct termination, what adds at least one step
to the execution. Assuming an unreliable failure detector to solve consensus, the
protocol tolerates any minority of RM crashes.

Paxos Commit (PC) [] has the same communication
complexity and, in some cases, the same communication pattern as GLS in good
runs. In PC, however, the second and third steps are used to run the Paxos con-
sensus protocol [] to agree on the vote of each RM. In the case of

112 Log Service for Transaction Termination

suspicions, an RM proposes ABORT on behalf of the suspected RM using its Paxos
instance. In PC, the role of deciding on the transaction’s outcome is logically disso-
ciated from the RMs; they are played by the acceptors. PC is non-blocking in the
presence of crashes of any minority of acceptors. When there is a single acceptor, PC
can be configured to have the same communication pattern and resilience as 2PC.
If every RM acts also as an acceptor, then it equals GLS. We report this latter case in
Table 5.1, which summarizes aspects of each approach.

The Uncoordinated Log Service (Uncoord) is an extension of PC to cope with the
ordering of transactions, durability of updates, and replacement of failed resource
managers. These aspects, however, to not enter in our analytical evaluation, where
PC and Uncoord are regarded as the same.

While the previous approaches try improve the resilience of 2PC by reducing and
distributing the role of the TM, other protocols tried to handle its failure by other

means. In the 3-Phase Commit (3PC) [] protocols, the TM
is replaced once it has crashed. Problems may arise, though, if the TM has not in
fact crashed, possibly leading to inconsistent termination [1.

Besides, to be replaceable, the TM cannot be the only one to keep data essential for
the termination, and disseminating this data introduces more communication steps
to the termination (See Table 5.1).

In the Coordinated Log Service, the replacement of a non-crashed TM may lead
to unnecessary aborts, but it does not break the consistency of the protocol. By
using Paxos in the coordinated log service, the protocol takes the same number of
communications steps to terminate as 3PC: five. Because the same coordinator is
used on many transactions, the cost of terminating them is amortized by aggregating
votes to be proposed, reducing the number of instances executed in parallel. Parallel
instances, in practice, impact negatively on each other due to resource contention.

Jiménez-Peres et al. [] proposed a commit service ab-
straction and a set of implementations. Different from our abstraction, their commit
service is defined for single commit instances. Their implementations provide an op-
timistic outcome after three steps, and a confirmation after the fourth step, when
the transaction can be committed. As we have done with RMs and acceptors in PC,
we analyse their protocol co-locating the commit servers and the RMs.

Table 5.1, below, compares the discussed approaches in terms of number of com-
munication steps required by each protocol, the number of messages sent on each
one, and their resilience, that is, the number of resouce manager failures that does
not prevent the protocols from terminating.

5.7 Evaluation 113

CSotrég? " | Messages | Resilience
2-PC 3 3R 0
GLS [] 3 2R*+R <R/2
Paxos Commit [] 3 2R*+R <R/2
Commit Service [] (34 | 3R*+2R <R/2
3-PC [] 5 5R —
Coord. Log Service 5 5R <R/2

Table 5.1: The cost of some commit protocols

5.7.2 Experimental Evaluation

By sending updates along with their votes, RMs can be recovered using only the
state of acceptors; sending them before could be a waste of resources, and sending
them after could cause the protocol to block during recovery. We have implemented
a variant of Paxos Commit in which votes carry RMs’ updates. Moreover, we also
augmented it with a procedure to recover RMs based on the acceptors state. We used
this Uncoordinated Log Service implementation in our experimental evaluation to
show the cost of storing updates on the acceptors instead of locally at the RMs.
Analytically, this approach has the same costs and resilience of Paxos Commit.

We have prototyped the Uncoordinated and the Coordinated log service in Java,
as well as the Paxos consensus protocol that underlies both of them, and com-
pared them using the Sprint infrastructure. More details on the prototype can be
found in []. The evaluation consisted of two benchmarks,
explained below, run in the Emulab testbed []. All nodes used
were equipped with 64-bit Xeon 3GHz processors, interconnected through a Gigabit
Ethernet switch.

Micro-benchmark

In the first experiment we used a micro-benchmark of non-conflicting transactions,
each comprising one write operation executed by one RM; each operation writes 0,
1000, or 7000 bytes of data, allowing us to evaluate the impact of the size of updates
carried by votes. To assess the impact of disk writes on the log service, we have run
experiments in which consensus acceptors have disk writes enabled and disabled
(i.e., consistency relies on at most a minority of acceptors crashing simultaneously).
To compare the different configurations, we first determined the workload needed
on each of them to reach a 10ms latency per transaction execution. Each entry in
Table 5.2 presents the throughput, in transactions per second, of the coordinated
and the uncoordinated techniques, and their ratio (number between parenthesis).

114 Log Service for Transaction Termination

Going from the first to the second line evidences the cost of writing on stable stor-
age: both approaches benefit from disabling the disk, although the uncoordinated
approach benefits more. The reason is that the coordinated approach already opti-
mizes disk access by using the same consensus instance and a single disk write for
multiple transactions.

Disk 0 bytes 1000 bytes 7000 bytes
On 1539/184 (8.36) 771/189 (4.08) 96/97 (0.99)
Off | 2936/1249 (2.35) | 1559/1181 (1.32) | 370/357 (1.04)

Table 5.2: Coord/Uncoord throughput ratio for 10ms latency

Going from the left to the right columns in Table 5.2 we see the effects of update
sizes in the log service. As the size grows, fewer votes can fit in the same proposal,
increasing the number of Paxos instances needed until each vote requires one full
instance, as in the uncoordinated version. At this point, the benefits of the coordi-
nator are minimal. Likewise, the gains of not writing on disk are smaller for bigger
updates, because more time is spent transferring the data.

TPC-C based benchmark

We also evaluated our implementations with a variant of the TPC-C [] bench-
mark in which clients submit requests without think times. The transactions and
their frequencies, however, are those specified by TPC-C. All tables but one (the
read only Items table) were range partitioned among RMs according to their pri-
mary keys; the read-only table was replicated on all RMs. As a result, at most 15%
transactions involved more than one RM (up to all RMs). Update transactions were
92% of the workload and produced data to be logged not exceeding 1500 bytes.
In the experiments, we varied the load by increasing the number of clients, and
measured the resulting throughput in transactions per second and their respective
response times. Each dotted curve in Figure 5.1 gives the theoretical relation be-
tween throughput and response time for different numbers of clients, as defined by
the Little’s Law: number of clients = throughput X response time.

As Figure 5.1 shows, very small loads (dotted curve with 2 clients) do not differ
significantly in performance between configurations. With higher loads, the coor-
dinated version outperforms the uncoordinated one and scales better. Although in
85% of the cases a single transaction requires one consensus instance regardless of
the termination protocol, the coordinated version can group at least five simultane-
ous requests, and even when a single RM could perform the batching on its own,

5.8 Final Remarks and Related Work 115

500 T 5 T Al T T T T T
.‘ ~uncoordinated 8 RMs —>—
~_ uncoordinated 16 RMs ---%---
1 - coordinated 8 RMs ---A:--
400 | - coordinated 16 RMs —6— |
(0] '
5 300 - %s. A 1
p . ; O 96
S 200 o 72
o K A e
o .
: O
100 A 36 1
: Qe S
& e 18
O Il Il Il Il [| S

0 50 100 150 200 250 300 350 400 450
Throughput [tps]

Figure 5.1: Maximum throughput versus response time of TPC-C transactions. The
number of clients is shown next to the curves. Disk writes at acceptors were enabled.

the coordinator is still better off as it can combine data from different RMs.

5.8 Final Remarks and Related Work

In this chapter we have introduced the specification of a log service for transaction
processing systems, which provides atomicity and durability to transactions through
a non-blocking termination protocol. The service totally orders non-concurrent
transactions. Should a resource manager fail, the service can be used to recover
the resource manager’s state prior to the crash and start a copy of it on a different
and functional node. Moreover, it safely copes with multiple copies of a resource
manager. Due to its general design and simple specification, we believe it can serve
as basis for further work.

Some works in the literature have similarities with our service. In Stamus and
Cristian’s approach [], for example, the log records of
resource managers are aggregated and stored at the transaction manager, which
is relied upon to implement the service. Their protocol, however, uses a byzan-
tine agreement abstraction and makes stronger synchrony assumptions. Besides,

116 Log Service for Transaction Termination

it does not consider the recovery of resource and transaction managers on dif-
ferent nodes in case of malfunctioning. Conversely, the log service of Daniels et
al. [] does allow recovery on different machines but, instead,
lacks the transaction termination feature. Also Mohan et al. []
used byzantine tolerant agreement abstractions. Their extended 2PC protocol can
be seen as a byzantine uncoordinated log service implementation.

We also presented two highly available implementations of the log service, coor-
dinated and uncoordinated, and provided a comparative experimental performance
evaluation. As we have shown in the previous section, these implementations are
representative of several well-known protocols in the literature. Although in theory
the uncoordinated approach outperforms the coordinated one by two communica-
tion steps, in our experimental evaluation the coordinated approach has led to a
much higher transaction throughput and smaller response times for small transac-
tions. This result is explained by the higher number of messages sent in parallel in
the uncoordinated version, negatively effecting on each other, and by the coordi-
nator being able to terminate possibly many transactions using a single instance of
consensus.

Resource managers and acceptors can be collocated to minimize the number of
nodes in the system, as done in other commit protocols that are based on consen-
sus [,]. However, we see a strong
reason to decouple these two roles in practical scenarios: resource managers are
generally more complex software artifacts and, therefore, more error prone than
acceptors; the latter must be available for the sake of all transactions in the sys-
tem and should not risk crashing because of a resource manager error. Besides, by
decoupling these roles, the availability of the system becomes determined by the
availability of quorum of acceptors, and more easily assessed.

Chapter 6

Conclusion

The difference between theory and practice is
bigger in practice than in theory.
Unknown author

6.1 Contributions

Agreement problems are recurrent in the development of fault-tolerant distributed
systems and have been the subject of a large amount of research in the last decades.
In spite of the large number of protocols proposed, we believe that concerning with
practical aspects of implementing and deploying such protocols is missing, what lim-
its their applications in real scenarios. In this thesis, we focus on the specification of
practical protocols for agreement problems in distributed systems. By practical we
mean adaptable crash-recovery protocols for asynchronous systems, which explore
optimistic—yet realistic—assumptions to progress but do not require them to ensure
correctness. Moreover, these protocols should harness building blocks readily avail-
able in todays infrastructures and semantic information to improve performance. In
these areas, this thesis makes the following contributions.

Multicoordinated Consensus We have presented protocols that explore sponta-
neous ordering to solve consensus in the crash-recovery model. We generalized
one of them, namely, B*-Consensus, as a multicoordinated mode of execution for
agreement protocols. Agreement protocols traditionally run in rounds whose re-
sponsibility of progress is entrusted to a coordinator agent. In the multicoordinated
mode, the coordinator of each round is replaced by a set of overlapping quorums of
coordinators and, as long as at least one quorum of coordinators is alive, the round
may still succeed in reaching agreement. Therefore, the multicoordinated mode
provides better resilience than the single-coordinated rounds. Compared to the fast

117

118 Conclusion

mode [], which completely avoids the coordinator, the multicoor-
dinated mode provides better resilience by tolerating more acceptor failures at the
expense of one communication step. We present a multicoordinated consensus pro-
tocol that extends Fast Paxos [], with its fast and classic modes. The
protocol can switch between classic, fast, and multicoordinated modes in runtime.
This feature allows the protocol to be deployed in many different environments and
to adapt to changes therein during the execution. For example, the protocol may
adapt to changes in the network bandwidth, network latency, message loss rate,
workload, and spontaneous message ordering. By using the right combination of
round types and recovery technique, our protocol emulates most consensus proto-
cols that we are aware of.

Multicoordinated Generalized Consensus While multicoordination reduces changes
of rounds due to the failures of their coordinators, the use of semantic information
about the values being agreed upon prevents round changes due to conflicting con-
current proposals. We have presented a protocol that combines both approaches in

a synergism to improve the availability of agreement protocols. Our protocol, Mul-
ticoordinated Paxos, is an extension of Generalized Paxos [] to solve
Generalized Consensus, and may be instantiated to solve several agreement proto-
cols. We have presented one such instantiation that solves the Generic Broadcast
problem [1.

Multicoordinated Agreement for Groups Corporative networks are generally or-
ganized hierarchically in groups of agents; agents inside a group communicate
through fast links, but agents in different groups experience much larger delays.
Hence, agreement protocols for these scenarios should avoid slow inter-group mes-
sages. On the one hand, fast protocols are too susceptible to collisions since the
slow links could jeopardize spontaneous ordering in any minimally loaded system.
On the other hand, using single-coordinated protocols would require messages to
be sent from one group to another simply to reach the coordinator. Although using
coordinator quorums instead of a single coordinator increases availability in this sce-
nario, it does not avoid the extra communication. The solution we presented here
is to split coordinator quorums in partially independent systems and ensure that no
conflicting proposals are issued in the same quorum system. We also showed how
this protocol can be improved by a recursive use of consensus and use of multicast
technology. This way, in good periods of execution, all proposed values are learned
by all agents in all groups in two inter-group message delays.

Log Service We presented a log service that abstracts the atomicity and durability
properties in transaction termination. The main advantages of using this service to

6.2 Future Work 119

implement distributed transactions are two. First, it encapsulates the underlaying
system inside the service, simplifying application implementation since it may be
oblivious to details. Second, it pushes atomicity and durability out of resource man-
agers and, because the service may be implemented to be more or less available and
fault tolerant, this improves the overall availability of the whole system.

6.2 Future Work

In extension to the work presented in this thesis, we believe that several points are
worth further investigation.

Reconfiguration Policies The ability to change a protocol’s execution mode is a
very powerful tool in that it allows the protocol to react to environment changes. To
the best of our knowledge, there has not been any work on self-adapting agreement
protocols nor on the policies that should drive these adaptations. We would like to
develop and experiment such policies and understand which ones are better suited
for different distributed systems like clusters, computational grids, and corporative
and overlay networks.

Byzantine Generalized Agreement Tolerating byzantine agents in consensus al-
gorithms can be achieved by simply adjusting quorum intersection sizes to mask
these agents’ influence []. Consider for example a round with sin-
gle coordinator in which the only coordinator is byzantine and submits multiple
proposals. This byzantine behavior is, in fact, equivalent to multiple proposals be-
ing issued in a fast round. Since the fast-quorum requirement (Assumption 3) is
enough to mask multiple proposals in fast-rounds, it is also enough to mask the
coordinator’s byzantine behavior. Similarly, the coordinator quorum requirement
(Assumptions 4) may be strengthened to require the coord-quorums to share at
least two coordinators and allow one coordinator to misbehave. Moreover, by em-
ploying a coord-quorum approach to start rounds, byzantine coordinators cannot
force a denial-of-service by constantly creating new rounds. More important, while
there has been no attempt to solve Generalized Consensus in byzantine settings, our
approach would allow us to do so “out-of-the-box”. This would allows us to gener-
alize, for example, PBFT [1, HQ [] and

Zyzzyva [1.

Hierarchical Agreement In the same way that coordinator quorums were used to
reach agreement among groups, in Chapter 4, another layer of quorums that filters
proposals before sending them to the coordinators could be added. In doing, we

120 Conclusion

can extend the multicoordinated collision fast protocols to several layers of a hier-
archically organized network. The result would be an aggregation protocol in the
lines of Astrolabe [], but with a final level of aggregation
that provides agreement. Whether this protocol would be practical is an interesting
question.

Partial Agreement In some cases, ensuring that a subset of learners eventually
learn some decided value is enough to satisfy the application needs. While it is
easy for acceptors to inform just some subset of the learners depending on the value
accepted, it would be interesting to also limit the work done by the acceptors them-
selves. For example, consider the environment discussed in Chapter 4, where agents
are divided in groups. If only the learners of some group G are interested in some
value, then only the acceptors in G should get involved in choosing it. This par-
tial agreement property seems a perfect fit for Generalized Consensus since, in this
problem, acceptors are allowed to accept diverging c-structs, as long as they are
compatible. If a single instance of Generalized Consensus among groups can be
used to reach agreement at all levels, i.e., inside groups, across a subset of them, or
all together, is an interesting question that we would like to explore.

Multicoordinated Log Service In Chapter 5 we presented the log service ab-
straction for transaction termination. We also presented two implementations, one
single-coordinated and another completely distributed. These are both extremes in
a spectrum of which multicoordination is in the middle. We have not studied any
multicoordinated implementation of the log service, but would like to do so. What
is more, we would like to compare that with Collision-Fast Paxos and identify under
which conditions each of these protocols would be the better option.

AMQP/Fix over the Log Service The Advanced Messaging Queue Protocol, AMQB
is a specification for transactional store and forward message queuing [,

1. The Financial Exchange protocol, or FIX for short
[1, is a specification for message exchange for
financial applications. Both, AMQP and FIX, are widely used in trading applications
and both resort to a transactional storage engine to provide the atomicity and dura-
bility that these applications require. Examples of storage engines used are MySQL
and the Mnesia databases. We believe that the strong semantics and the simple in-
terface of our log service are a perfect fit for these applications and plan on replacing
the storage engine of one of the many open-source implementations of AMQP (Fix
is proprietary). This would allows us to test the log service in different applications,
identify its drawbacks, and compare it with other implementations.

Appendix A

Multicoordinated Paxos

A.1 Proof of Correctness

A.1.1 Preliminaries

Our proofs depend on a number of basic definitions and propositions, presented
in this section. Apart from an extra proposition, everything in this section comes
from [], since we want to follow the same notation and proof struc-
ture as presented in that paper.

Concerning round numbers (hereinafter called ballot numbers), we only assume
that they are totally ordered by a relation < and there is a smallest ballot number
0. We use balnum as an abbreviation for ballot number, and let BalNum be the
set of all balnums. Balnums can be either fast or classic, but not both. Quorums
of acceptors and coordinators depend upon the ballot number. We assume both
the Fast Quorum Requirement (Assumption 3) and the Coord-quorum Requirement
(Assumption 4). Lastly, we assume a c-struct set CStruct upon which Generalized
Consensus is defined.

We start by defining a data structure called ballot array, used by our abstract
algorithms. Ballot arrays keep the votes of each acceptor at each balnum and the
ballot number at which each acceptor currently is (the highest-numbered balnum it
has heard of). Vote entries are initialized with a value none that is not in CStruct.
Due to that, we extend C to cope with none such that none C none but =(v C w) if
either v or w (but not both) equals none.

Definition 3 (Ballot Array—Definition 1 of [D A ballot array bA

is a mapping that assigns to each acceptor a a balnum bA, and to each acceptor a and
balnum m a value bA,[m] that is a c-struct or equals none, such that for every acceptor
a:

* bA,[0] # none,

121

122 Multicoordinated Paxos

* The set of balnums m with bA,[m] # none is finite, and

* bA,[m] = none for all balnums m > l;;\a.

We say that a value v is chosen at balnum m if an m-quorum accepts v at m. We
can also define chosen at with respect to a ballot array as follows.

Definition 4 (Chosen at—Definition 2 of [1 A c-struct v is chosen
at balnum m in ballot array bA iff there exists an m-quorum () such that v E bA,[m]
for all acceptors a in (). A c-struct v is chosen in ballot array bA iff it is chosen at m
in bA for some balnum m.

Considering that an acceptor a can only accept c-structs at balnums equal to
or greater than its current one (bA, in ballot array bA), we define a c-struct to be
choosable at balnum m iff it is or can still be chosen at m.

Definition 5 (Choosable at—Definition 3 of [D A c-struct v is
choosable at balnum m in ballot array bA iff there exists an m-quorum () such that
v E bA,[m] for every acceptor a in) with bA, > m.

A c-struct is safe at balnum m iff it extends any c-struct choosable at a balnum j
such that j < m, and we define a ballot array bA to be safe iff every entry bA,[m]
different from none is safe at m, for every acceptor a. If acceptors accept only
safe c-structs at balnums greater than or equal to their current ones, the algorithm
guarantees that if v is ever chosen at a balnum 7, then no acceptor will have accepted
a c-struct w that does not extend v at a balnum j greater than i.

Definition 6 (Safe at—Definition 4 of [D A c-struct v is safe at m
in bA iff w E v for every balnum k < m and every c-struct w that is choosable at k.
A ballot array bA is safe iff for every acceptor a and balnum k, if bA,[k] is a c-struct
then it is safe at k in bA.

The following proposition states that the chosen values of a safe ballot array
are compatible. It implies that an algorithm can satisfy the consistency property of
Generalized Consensus by having acceptors accept only safe values at balnums that
are no lower than their current ones. Its detailed proof appears in [1.

Proposition 1 (Proposition 1 of [D Ifaballot array bA is safe, then
the set of values that are chosen in bA is compatible.

A.1 Proof of Correctness 123

A.1.2 Abstract Multicoordinated Paxos

As in [], our proof of correctness starts with an abstract algorithm
that can be more easily proved correct. The reason why we cannot use the same
abstract algorithm as in [] is the difficulty of multicoordinated rounds
to implement the variable minTried used there. As a result, we came up with an even
more abstract algorithm, which can be implemented not only by Multicoordinated
Paxos, but also by the abstract algorithm in [1.

Our abstract algorithm is based upon a subset of the variables used by the ab-
stract algorithm of | 1:

learned An array of c-structs, where learned[l] is the c-struct currently learned by
learner [. Initially, learned[l] = L for all learners I.

propCmd The set of proposed commands. It initially equals the empty set.

bA A ballot array. It represents the current state of the voting. Initially, Z;AQ =0,
bA,[0] = L and bA,[m] = none for all m > 0. (Every acceptor casts a default
vote for | in ballot 0, so the algorithm begins with L chosen.)

maxTried An array of c-structs, where maxTried[m] is either a c-struct or equal to
none, for every balnum m. Initially, maxTried[0] = L and maxTried[m] =
none for all m > 0.

The Abstract Multicoordinated Paxos algorithm satisfies the following invariants,
which, as we prove next, imply the properties Nontriviality and Consistency of Gen-
eralized Consensus.

maxTried Invariant For every balnum m, if maxTried[m] # none, then

1. maxTried[m] is proposed.

2. maxTried[m] is safe at m in bA.
bA Invariant For all acceptors a and balnums m, if bA,[m] # none, then

1. bA,[m] is safe at m in bA.
2. If m is a classic balnum, then bA,[m] C maxTried[m].

3. If m is a fast balnum, then bA,[m] is proposed.
learned Invariant For every learner [:

1. learned[l] is proposed.

2. learned[l] is the lub of a finite set of c-structs chosen in bA.

124 Multicoordinated Paxos

Proposition 2 The learned invariant implies the Nontriviality property of Generalized
Consensus.

Proor: By part 1 of the learned invariant. O

Proposition 3 Invariants bA and learned imply the Consistency property of General-
ized Consensus.

Proor: By the definition of Consistency, it suffices to assume that invariants bA and
learned are true, and prove that, for every pair of learners /; and /,, learned[/,] and
learned[l,] are compatible. The proof is divided into four steps, presented below:
1. DA is safe.
Proor: This follows from part 1 of the bA invariant and the definition of a safe
ballot array (Definition 6).
LET: S ={v:wvischoseninbA}
2. S is compatible.
Proor: By step 1 and Proposition 1.
3. For every learner [, learned[l] C LIS.
Proor: This is true by part 2 of the learned invariant and axiom CS3, which implies
that if set S is compatible, then the lub of § is equal to or extends the lub of any
subset of S.
4. Q.E.D.
ProoF: By step 3 and the definition of compatible c-structs. O

Abstract Multicoordinated Paxos has seven atomic actions, described below. A
complete specification of the algorithm in TLA" is given in Section A.2.2.

Propose(C) for any command C. It is enabled iff C' ¢ propCmd. It sets propCmd to
propCmd U {C'}.

JoinBallot(a,m) for acceptor a and balnum m. It is enabled iff I;I\AQ < m. It sets l;:‘\a
to m.

StartBallot(m,w) for balnum m and c-struct w. It is enabled iff

* maxTried[m] = none,
e w is safe at m in bA, and

e w € Str(propCmd).
It sets maxTried[m] to w.

Suggest(m, o) for balnum m and c-seq o. It is enabled iff

A.1 Proof of Correctness 125

e maxTried[m] # none and

e o € Seq(propCmd).
It sets maxTried[m] to maxTried[m] e o
ClassicVote(a,m,v) for acceptor a, balnum m, and c-struct v. It is enabled iff

*m2= E\Aa,
e ¢ is safe at m in bA,
* v C maxTried[m], and

* bA,[m] =none or bA,[m] C v.
It sets bA,[m] to v and I;;\a to m.
FastVote(a, C) for acceptor a and command C'. It is enabled iff

* (€ propCmd,
. I;;\a is a fast balnum, and

* bA, [E\Aa] # none.
It sets bA,[bA,] to bA,[bA,] e C.

AbstractLearn(l,v) for learner [and c-struct v. It is enabled iff v is chosen in bA. It
sets learned([l] to learned[l] Ll v.

The following proposition proves that the algorithm also satisfies the Stability
property of Generalized Consensus.

Proposition 4 Abstract Multicoordinated Paxos satisfies the Stability property of Gen-
eralized Consensus.

Proor: For any learner [, the only action that changes the value of learned[l] is
AbstractLearn(l,v). Since, by the definition of lub, this action can only extend the
value of learned[l], Stability is ensured. a

It remains to prove that the abstract algorithm satisfies the invariants maxTried,
bA, and learned. For the sake of simplicity, however, we use some extra notation
in the proof. First, when analyzing the execution of an action, we use ordinary
expressions such as exp to represent the value of that expression before the action
is executed, and we let exp’ be the value of that expression after the action exe-
cution. Second, to avoid ambiguity, we let maxTriedInv, bAInv, and learnedInv be
expressions representing the statements of the three invariant properties.

126 Multicoordinated Paxos

Proposition 5 Abstract Multicoordinated Paxos satisfies the invariants maxTried, bA,
and learned.

Proor: The invariants are trivially satisfied in the initial state. Therefore, it suffices
to assume that the invariants are true and prove that, for every action a, they remain
true if a is executed. We do that in the following, analyzing case by case.

1. Cask: Action Propose(C) is executed, where C' € Cmd.

PrROOF SKETCH: Action Propose(C) only changes variable propCmd, which is the set of proposed
values, and does that by adding a new element to it. Invariant conditions that do not refer to this
set are obviously preserved. The others are kept true since the set propCmd only increases and
c-structs composed of proposed commands remain composed of proposed values.

1.1. 1. maxTried’ = maxTried
2. bA" =bA
3. learned’ = learned
4. propCmd’ = propCmd U {C} A C' ¢ propCmd
ProoF: By the definition of action Propose(C).
1.2. maxTriedInV’ is true.
From its definition, it suffices to:
AssuME: maxTried[r]’ # none, for any balnum r
Prove: 1. maxTried[r]" € Str(propCmd’) and
2. maxTried[r]’ is safe at r in bA’.
1.2.1. maxTried[r]’ € Str(propCmd")
ProoF: By applying the assumption of step 1.2 and step 1.1.1 to the invariant
maxTriedInv we verify that maxTried[r] € Str(propCmd), and step 1.1.4 tells
us that propCmd C propCmd’.
1.2.2. maxTried[r]’ is safe at in bA’.
Proor: By maxTriedInv and steps 1.1.1 and 1.1.2.
1.2.3. Q.E.D.
1.3. bAInV' is true.
From its definition, it suffices to:
AssUME: bA,[r]" # none, for any acceptor e and balnum r
Prove: 1. bA,[r] is safe at r in bA’,
2. ris classic = bA,[r]’ E maxTried[r]’, and
3. ris fast = bA,[r]" € Str(propCmd’).
1.3.1. bA,[r]’ is safe at r in bA’.
Proo¥r: By bAInv and step 1.1.2.
1.3.2. ris classic = bA,[r]’ € maxTried[r]’
ProoF: By bAInv and steps 1.1.1 and 1.1.2.
1.3.3. ris fast = bA,[r]’ € Str(propCmd")
Proo¥: Step 1.1.2 and bAInv imply that, if r is a fast balnum, bA,[]’ € propCmd.
Step 1.1.4 shows that propCmd C propCmd'.

A.1 Proof of Correctness 127

1.3.4. Q.ED.
1.4. learnedInv’ is true.
LET: h be any learner, without loss of generality.
1.4.1. learned[h]’ € Str(propCmd’)
Proor: Step 1.1.3 and learnedInv imply that learned[h]’" € Str(propCmd), and
step 1.1.4 implies that propCmd C propCmd’.
1.4.2. learned[h]’ is the lub of a finite set of c-structs chosen in bA’.
ProoF: By learnedInv and steps 1.1.2 and 1.1.3.
1.4.3. Q.ED.
1.5. Q.E.D.

2. Case: Action JoinBallot(a,m) is executed, where « is an acceptor and m is a
ballot number.

PROOF SKETCH: Action JoinBallot(a, m) only changes Z/»\C\a, setting it to m, which is bigger than Z;I\AG.
Invariant conditions that do not refer to Z;I\AG are obviously preserved. It remains to check the
conditions stating that certain values are safe or chosen in bA’. The definition of chosen does not
involve b/f\\e for any acceptor e. The definition of safe is based upon the definition of choosable
at, which does refer to E\Ae, but implies that a value w that is choosable at round & in bA’ is also
choosable at k in bA. By the definition of safe, this implies that a value x that is safe at a balnum
5 in bA is also safe at s in bA’.

2.1. 1.bA,<m

2. Z;A; =m
3. Vi € Acceptor \ {a} : 131\41 = 131\41-
4. Vi € Acceptor,j € BalNum : bA;[j] = bA;[J]
5. propCmd’ = propCmd
6. maxTried’ = maxTried
7. learned’ = learned

ProoF: By the definition of action JoinBallot(a, m).

2.2. If z is safe at s in bA, for any c-struct x and balnum s, then z is safe at s in
bA'.
The proof is by contradiction, as follows.
AssuME: There exist c-struct z and balnum s, such that
1. z is safe at s in bA
2. z is not safe at s in bA’

Prove: FALSE

2.2.1. Choose c-struct w and balnum £ such that k£ < s, w is choosable at & in

bA’, and w Z x.

Proor: w and k exist by assumption 2 of step 2.2 and the definition of safe
at.

2.2.2. w is choosable at k in bA.

128 Multicoordinated Paxos

2.2.2.1. Choose k-quorum () such that
Vee Q:bA, > k= wC bA,[k]
Proor: () exists by the definition of choosable at.
2.2.2.2. Ve € Q:bA, > k = w C bA, [k]
Proor: Steps 2.1.(1-3) imply that Vi € Acceptor : 1;1\41- >k = EAZ > k.
Moreover, step 2.1.4 implies Vi € Acceptor : bA,[k] = bA,[k]’. If we com-
bine this two formulas with the one of step 2.2.2.1, we can derive the
expression of the current step.
2.2.2.3. Q.E.D.
Proor: By step 2.2.2.2 and the definition of choosable at.
2.2.3. Q.E.D.
Proor: If w is choosable at k£ < s in bA (step 2.2.2), and w Z z (step 2.2.1),
then z is not safe at s in bA, contradicting assumption 1 of step 2.2.
2.3. maxTriedInV’ is true.
From its definition, it suffices to:
AssuME: maxTried[r]’ # none, for any balnum r
ProvE: 1. maxTried[r]" € Str(propCmd’) and
2. maxTried[r]’ is safe at r in bA’.
2.3.1. maxTried[r]’ € Str(propCmd")
Proor: By maxTriedInv and steps 2.1.5 and 2.1.6.
2.3.2. maxTried[r]’ is safe at r in bA’.
Proor: By maxTriedInv, step 2.1.6, and step 2.2.
2.3.3. Q.E.D.
2.4. bAInV' is true.
From its definition, it suffices to:
AssUME: bA,[r]’ # none, for any agent e and balnum r
ProvE: 1. DbA,[r] is safe at r in bA’,
2. ris classic = bA,[r]’ E maxTried[r]’, and
3. ris fast = bA,[r]’ € Str(propCmd’).
2.4.1. bA,[r] is safe at r in bA’.
ProoF: By bAInv, step 2.1.4, and step 2.2.
2.4.2. ris classic = bA,[r]’ E maxTried[r]’
ProoF: By bAInv and steps 2.1.4 and 2.1.6.
2.4.3. ris fast = bA,[r]" € Str(propCmd")
Proo¥r: By bAInv and steps 2.1.4 and 2.1.5.
2.4.4. Q.E.D.
2.5. learnedInv’ is true.
LET: h be any learner, without loss of generality.
2.5.1. learned[h]’ € Str(propCmd’)
ProoF: By learnedInv and steps 2.1.5 and 2.1.7.

A.1 Proof of Correctness 129

2.5.2. learned[h]’ is the lub of a finite set of c-structs chosen in bA’.
PrOOF: learnedInv and step 2.1.7 imply that learned[h]’ is the lub of a finite
set of c-structs chosen in bA. Step 2.1.4 and the definition of a chosen value
imply that a value that is chosen in bA is also chosen in bA’.
2.5.3. Q.E.D.
2.6. Q.E.D.

3. CasE: Action StartBallot(m,w) is executed, where m is a balnum and w € CStruct.

PROOF SKETCH: Action StartBallot(m,w) changes maxTried[m] from none to w, which is ensured to
be both proposed and safe at m in bA. The action does not change the other variables. It preserves
the maxTried invariant because w is proposed and safe at m in bA. It preserves the bA invariant
because it does not change bA and bA,[m] is ensured to equal none, for any acceptor e, by the bA
invariant itself. It preserves the learned invariant because it does not change learned or bA.

3.1. 1. maxTried[m] = none
2. w is safe at m in bA
3. w € Str(propCmd)
4. propCmd’ = propCmd
5. maxTried[m] = w
6. Vi € BalNum \ {m} : maxTried[1]’ = maxTried[]
7. bA" =DbA
8. learned’ = learned
ProoF: By the definition of action StartBallot(m,w).
3.2. maxTriedInV' is true.
From its definition, it suffices to:
AssuME: maxTried[r]” # none, for any balnum r
Prove: 1. maxTried[r]" € Str(propCmd’) and
2. maxTried[r]’ is safe at r in bA’.
3.2.1. maxTried[r]’ € Str(propCmd")
Proor: If r = m, by steps 3.1.(3-5). If r # m, it is implied by maxTriedInv
and steps 3.1.4 and 3.1.6.
3.2.2. maxTried[r]’ is safe at r in bA’.
Proor: If r = m, by steps 3.1.2, 3.1.5, and 3.1.7. If r # m, it is implied by
maxTriedInv and steps 3.1.(6-7).
3.2.3. Q.E.D.
3.3. bAInV' is true.
From its definition, it suffices to:
AssuME: bA,[r]’ # none, for any agent e and balnum r
ProvE: 1. bA,[r] is safe at r in bA’,
2. ris classic = bA,[r]’ E maxTried[r]’, and
3. ris fast = bA,[r]’ € Str(propCmd’).
3.3.1. bA,[r] is safe at r in bA’.

130 Multicoordinated Paxos

Proo¥r: By bAInv and step 3.1.7.
3.3.2. ris classic = bA,[r]’ CE maxTried[r]’
Proor: Step 3.1.1 and bAInv imply that bA,[m] = none. Now, if we apply
step 3.1.7, we get that bA,[m]’ = none. This implies, by the assumption of
step 3.3, that r # m. Thus, the proof follows from bAInv and steps 3.1.(6-7).
3.3.3. ris fast = bA,[r]" € Str(propCmd")
Proo¥F: By bAInv and steps 3.1.4 and 3.1.7.
3.3.4. Q.E.D.
3.4. learnedInV’ is true.
LET: h be any learner, without loss of generality.
3.4.1. learned[h]’ € Str(propCmd’)
Proo¥: By learnedInv and steps 3.1.4 and 3.1.8.
3.4.2. learned[h]’ is the lub of a finite set of c-structs chosen in bA’.
ProOF: By learnedInv and steps 3.1.(7-8).
3.4.3. Q.E.D.
3.5. Q.E.D.

4. Cast: Action Suggest(m, o) is executed, where m is a ballot number and o is a
C-5€(q.

PROOF SKETCH: Action Suggest(m, o) changes maxTried[m] to maxTried[m] e o, where o is a se-
quence of proposed commands. The action does not change the other variables. It preserves
the maxTried invariant because o is proposed and, by the definition of safe at, any extension of
a value that is safe at m in bA is also safe at m in bA. It preserves the bA invariant because it
does not change bA and the bA invariant ensures that bA,[m] is either none or a value v such
that v C maxTried[m], for any acceptor e. It preserves the learned invariant because it does not
change learned or DA.

4.1. 1. maxTried[m] # none
2. 0 € Seq(propCmd)
3. propCmd’ = propCmd
4. maxTried[m]’ = maxTried[m] e o
5. Vi € BalNum \ {m} : maxTried[1]’ = mazTried[]
6. bA’ =bA
7. learned’ = learned
ProoF: By the definition of action Suggest(m, o).
4.2. maxTriedInV’ is true.
From its definition, it suffices to:
AssuME: maxTried[r]’ # none, for any balnum r
ProvE: 1. maxTried[r]" € Str(propCmd’) and
2. maxTried[r]’ is safe at r in bA’.
4.2.1. maxTried[r]’ € Str(propCmd’)
Proor: If r = m, by maxTriedInv and steps 4.1.(2-4). If r # m, it is implied

A.1 Proof of Correctness 131

by maxTriedInv and steps 4.1.3 and 4.1.5.
4.2.2. maxTried[r]’ is safe at r in bA’.
Proor: maxTriedInv implies that maxTried[r] is safe at r in bA, and step 4.1.6
states that bA = bA’. Steps 4.1.(4-5) complete the proof by implying that
maxTried[r] C maxTried[r]’. This is enough because the definition of safe at
implies that if w is safe at £ in 3, then v is safe at k£ in 3, for any v such that
w E v.
4.2.3. Q.E.D.
4.3. bAInV' is true.
From its definition, it suffices to:
AssUME: bA,[r]’ # none, for any agent e and balnum r
Prove: 1. bA,[r] is safe at r in bA’,
2. ris classic = bA,[r]’ E maxTried[r]’, and
3. ris fast = bA,[r]’ € Str(propCmd’).
4.3.1. bA,[r] is safe at r in bA’.
Proor: By bAInv and step 4.1.6.
4.3.2. ris classic = bA,[r]’ C maxTried[r]
ProoF: Step 4.1.6 implies that bA,[r]" = bA,[r], bAInv implies that bA,[r] E
maxTried[r], and steps 4.1.(4-5) imply that maxTried[r] E maxTried[r]’,
completing the proof.
4.3.3. ris fast = bA,[r]" € Str(propCmd")
Proo¥r: By bAInv and steps 4.1.3 and 4.1.6.
4.3.4. Q.E.D.
4.4. learnedInv’ is true.
LET: h be any learner, without loss of generality.
4.4.1. learned[h]’ € Str(propCmd’)
ProoF: By learnedInv and steps 4.1.3 and 4.1.7.
4.4.2. learned[h]’ is the lub of a finite set of c-structs chosen in bA’.
ProoF: By learnedInv and steps 4.1.(6-7).
4.4.3. Q.E.D.
4.5. Q.E.D.

5. Case: Action ClassicVote(a, m,v) is executed, where « is an acceptor, m is a ballot
number, and v € CStruct.

132 Multicoordinated Paxos

PROOF SKETCH: Action ClassicVote(a, m,v) sets bA,[m] to c-struct v only if m > E\Aa, v is ensured
to be safe at m in bA, and bA,[m] equals none or bA,[m] C v. It is also a pre-condition to this
action that v E maxTried[m], which implies that v is proposed, by the maxTried invariant. Since
only entry bA,[m] (m > E\Aa) is changed together with Z;I\Aa, which is set to m, and the definition
of choosable at considers only entries bA,[j] where j < 1;1\46, no value can be made unsafe at any
balnum after the execution of this action. It preserves the maxTried invariant because it does not
change maxTried or propCmd and it does not make any entry unsafe. It preserves the bA invariant
because no entry is made unsafe and the only entry it changes in bA is set to a safe and proposed
value. It preserves the learned invariant because it does not change learned and any value that is
chosen in bA remains chosen after the action is executed, by the definition of chosen.
5.1. 1. m > DA,
2. v is safe at m in bA
. v E maxTried[m]
. bA,[m] =noneVbA,[m]E v
. propCmd’ = propCmd
. maxTried = maxTried =~
. Vi € Acceptor \ {a} : DA, = DA,
B =
9. Vi € Acceptor,j € BalNum : (i # a V j # m) = bA;[j] = bA;[j]
10. bA,[m] = v
11. learned’ = learned
Proo¥: By the definition of action ClassicVote(a,v).
5.2. If x is safe at s in bA, for any c-struct z and balnum s, then x is safe at s in
bA'.
The proof is by contradiction, as follows.
AssuME: There exist c-struct z and balnum s, such that
1. z is safe at s in bA
2. 7z is not safe at s in bA’
Prove: FALSE
5.2.1. Choose c-struct w and balnum £ such that & < s, w is choosable at % in
bA’, and w Z z.
ProoF: w and k exist by assumption 5.2.2 and the definition of safe at.
5.2.2. w is choosable at k in bA.
5.2.2.1. Choose k-quorum () such that

0o NONuUu1 bW

VeeQ:lﬁ;>k:wEbAe[/~c]’

ProoF: () exists by the definition of choosable at.

5.2.2.2. Ve € Q:bA, > k= wC bA,[k]
Proor: Steps 5.1.(8-9) imply that Vi € Acceptor : E\LX: > k = bA[k] =
bA;[k]. This equation applied to the one of step 5.2.2.1 leads to

Ve e Q:bA, > k= w T bA,[k].

A.1 Proof of Correctness 133

Steps 5.1.(1,7-8) imply that Vi € Acceptor : l;\; > Ez\‘\i. Thus, Ve € @ :
l/);\e > k= E\L\; > k, which together with the previous equation leads us to
Ve e Q:bA, >k = wC bA,[k].
5.2.2.3. Q.E.D.
Proor: By step 5.2.2.2 and the definition of choosable at.
5.2.3. Q.E.D.
Proor: If w is choosable at £ < s in bA (step 5.2.2), and w Z = (step 5.2.1),
then z is not safe at s in bA, contradicting assumption 1 of step 5.2.
5.3. maxTriedInV’ is true.
From its definition, it suffices to:
AssuME: maxTried[r]’ # none, for any balnum r
Prove: 1. maxTried[r]" € Str(propCmd’) and
2. maxTried[r]’ is safe at r in bA’.
5.3.1. maxTried[r]’ € Str(propCmd")
ProOOF: By steps 5.1.(5-6).
5.3.2. maxTried[r]’ is safe at r in bA'.
Proor: By maxTriedInv, step 5.1.6 and step 5.2.
5.3.3. Q.E.D.
5.4. bAInV' is true.
From its definition, it suffices to:
AssuME: bA,[r]’ # none, for any agent e and balnum r
ProvE: 1. bA,[r] is safe at r in bA’,
2. ris classic = bA,[r]’ E maxTried[r]’, and
3. ris fast = bA,[r]’ € Str(propCmd’).
5.4.1. bA,[r] is safe at r in bA’.
Proor: If e = a and r = m, it follows from steps 5.1.2 and 5.1.10. Otherwise,
it follows from bAInv, step 5.1.9, and step 5.2.
5.4.2. ris classic = bA,[r]" & maxTried[r]’
Proor: If e = @ and 7 = m, it follows from steps 5.1.3 and 5.1.10. Otherwise,
it follows from bAInv and step 5.1.9.
5.4.3. risfast = bA,[r]’ € Str(propCmd")
Proor: If e = a and r = m, it follows from steps 5.1.3 and 5.1.10, and
maxTriedInv. Otherwise, it follows from bAInv and step 5.1.9.
5.4.4. Q.E.D.
5.5. learnedInV’ is true.
LET: h be any learner, without loss of generality.
5.5.1. learned[h]’ € Str(propCmd")
ProoOF: By learnedInv and steps 5.1.5 and 5.1.11.
5.5.2. learned[h]’ is the lub of a finite set of c-structs chosen in bA’.
ProOF: learnedInv and step 5.1.11 imply that learned[h]’ is the lub of a finite

134 Multicoordinated Paxos

set of c-structs chosen in bA. Steps 5.1.(4,9-10) state that the only entry of
bA that is modified, is extended. The definition of a chosen value, therefore,
implies that a value that is chosen in bA is also chosen in bA’, completing the
proof.
5.5.3. Q.E.D.
5.6. Q.E.D.

6. Case: Action FastVote(a, C) is executed, where « is an acceptor and C' € Cmd.
PROOF SKETCH: Action FastVote(a, C) sets bAa[EZa] to c-struct bAa[l;Aa] e C only if bA, [Z/»\Aa] does
not equal none and C is proposed. Since only bA, [E\Aa] is changed and the definition of choosable
at considers only entries bA,[m] where m < I;;\e, no value can be made unsafe at any balnum
after the execution of this action. It preserves the maxTried invariant because it does not change
maxTried or propCmd and it does not make any entry unsafe. It preserves the bA invariant because
no entry is made unsafe and the only entry it changes in bA is extended with a proposed value,
and the extension of a safe c-struct is also safe. It preserves the learned invariant because it does
not change learned and any value that is chosen in bA remains chosen after the action is executed,
by the definition of chosen.

6.1. 1. C € propCmd
2. 1;1\% is a fast balnum
. bAa[l;z\Aa] # none
. propCmd’ = propCmd
. maxTried’ = maxTried
. bA,[bA,]' =DbA,[bA,] e C
. Vi € Acceptor : 574; = I;\Ai
. Vi € Acceptor,j € BalNum : (i # aV j # bA,) = bA,[j] = bA[j]
9. learned’ = learned
ProoFr: By the definition of action FastVote(a,v).
6.2. If x is safe at s in bA, for any c-struct z and balnum s, then x is safe at s in
bA'.
The proof is by contradiction, as follows.
AssuME: There exist c-struct z and balnum s, such that
1. z is safe at s in bA
2. 7z is not safe at s in bA’
Prove: FALSE
6.2.1. Choose c-struct w and balnum £ such that k£ < s, w is choosable at & in
bA’, and w Z z.
ProoF: w and k exist by assumption 6.2.2 and the definition of safe at.
6.2.2. w is choosable at & in bA.
6.2.2.1. Choose k-quorum () such that

Ve € Q:E\A;>k:>wEbAe[k]/
Proor: () exists by the definition of choosable at.

O NN Ol bW

A.1 Proof of Correctness 135

6.2.2.2. Ve € Q:bA, > k= wC bA,[k]

ProoF: Step 6.1.7 states that 151\4; = Z;Ze, and step 6.1.8 implies that bA,[k]’
bA,[k] if DA, > k.
6.2.2.3. Q.E.D.
ProOF: By step 6.2.2.2 and the definition of choosable at.
6.2.3. Q.E.D.
Proor: If w is choosable at k < s in bA (step 6.2.2), and w £ x (step 6.2.1),

then z is not safe at s in bA, contradicting assumption 1 of step 6.2.
6.3. maxTriedInV' is true.

From its definition, it suffices to:
AssuME: maxTried[r]” # none, for any balnum r
ProvE: 1. maxTried[r]’ € Str(propCmd’) and
2. maxTried[r]’ is safe at r in bA’.
6.3.1. maxTried[r]’ € Str(propCmd’)
ProOF: By steps 6.1.(4-5).
6.3.2. maxTried[r] is safe at r in bA’.

Proor: By maxTriedInv, step 6.1.5 and step 6.2.
6.3.3. Q.E.D.

6.4. bAInV' is true.
From its definition, it suffices to:
AssUME: bA,[r]’ # none, for any agent e and balnum r
ProvE: 1. bA,[r] is safe at r in bA’,
2. ris classic = bA,[r]’ € maxTried[r]’, and
3. ris fast = bA,[r]’ € Str(propCmd’).
6.4.1. bA,[r] is safe at r in bA'.
Proor: If e=a and r = l;;\a, it follows from steps 6.1.3 and 6.1.6, bAInv, and
the definition of safe at, which implies that the extension of a safe value is
also safe. Otherwise, it follows from bAInv, step 6.1.8, and step 6.2.
6.4.2. r is classic = bA,[r]’ E maxTried[r]’
Proor: It follows from bAInv and step 6.1.8, since r = I;I\Ae and e = a imply
that r is not classic, by step 6.1.2.
6.4.3. ris fast = bA,[r]’ € Str(propCmd")
Proor: If e=a and r = I;;Aa, it follows from bAInv and steps 6.1.1 and 6.1.6.

Otherwise, it follows from bAInv and step 6.1.8.
6.4.4. Q.E.D.

6.5. learnedInV’ is true.
LET: h be any learner, without loss of generality.
6.5.1. learned[h]’ € Str(propCmd")
ProoF: By learnedInv and steps 6.1.4 and 6.1.9.
6.5.2. learned[h]’ is the lub of a finite set of c-structs chosen in bA’.

136 Multicoordinated Paxos

ProoOF: learnedInv and step 6.1.9 imply that learned[h]’ is the lub of a finite
set of c-structs chosen in bA. Steps 6.1.(3,6-8) state that the only entry of
bA that is modified, is extended. The definition of a chosen value, therefore,
implies that a value that is chosen in bA is also chosen in bA’, completing the
proof.
6.5.3. Q.E.D.
6.6. Q.E.D.

7. Casi: Action AbstractLearn(l,v) is executed, where [is a learner and v € CStruct.

ProOOF SKETCH: Action AbstractLearn(l,v) only changes variable learned, which is the array of
learned c-structs, and does that by extending one entry to the lub of it with a chosen c-struct.
Invariants maxTried and bA are obviously preserved. The first part of the learned invariant is pre-
served because this extension is proposed, by the definition of chosen at, the bA invariant and
axiom CS3. The second part is obviously preserved by its definition and the one of the action.

7.1. 1. v is chosen in bA
2. propCmd’ = propCmd
. maxTried’ = maxTried
.bA" =bA
. learned[1]’ = learned[1] U v
6. Vi € Learner \ {1} : learned[i]’ = learned[i]
ProoF: By the definition of action AbstractLearn(l,v).
7.2. maxTriedIny’ is true.
From its definition, it suffices to:
AssuME: maxTried[r]’ # none, for any balnum r
Prove: 1. maxTried[r]" € Str(propCmd’) and
2. maxTried[r]’ is safe at r in bA’'.
7.2.1. maxTried[r]" € Str(propCmd")
Proor: By maxTriedInv and steps 7.1.(2-3).
7.2.2. maxTried[r]’ is safe at r in bA’.
Proor: By maxTriedInv and steps 7.1.(3-4).
7.2.3. Q.E.D.
7.3. bAInV' is true.
From its definition, it suffices to:
AssUME: bA,[r]’ # none, for any acceptor e and balnum r
Prove: 1. bA,[r] is safe at r in bA’,
2. ris classic = bA,[r]’ C maxTried[r]’, and
3. ris fast = bA,[r]" € Str(propCmd’).
7.3.1. bA,[r] is safe at r in bA’.
ProOF: By bAInv and step 7.1.4.
7.3.2. ris classic = bA,[r]’ T maxTried[r]’
Proo¥r: By bAInv and steps 7.1.(3-4).

Ul b~ W

A.1 Proof of Correctness 137

7.3.3. ris fast = bA,[r]’ € Str(propCmd")
Proo¥F: By bAInv and steps 7.1.2 and 7.1.4.
7.3.4. Q.E.D.
7.4. learnedInv’ is true.
LET: h be any learner, without loss of generality.
7.4.1. learned[h]’ € Str(propCmd")
Proor: If h # [, it follows from learnedInv and steps 7.1.6 and 7.1.2. Oth-
erwise, the definition of a chosen value, bAInv, and step 7.1.1 imply that
v € Str(propCmd). learnedInv implies that learned[l] € Str(propCmd). Propo-
sition 1 and learnedInv imply that v and learned[l] are compatible, and axiom
CS3 states that its lub exists and must be in Str(propCmd). The proof is com-
pleted by steps 7.1.2 and 7.1.5.
7.4.2. learned[h] is the lub of a finite set of c-structs chosen in bA’.
Proor: If h # [, it follows from learnedInv and step 7.1.6. Otherwise, it
follows from learnedInv and steps 7.1.1 and 7.1.5.
7.4.3. Q.E.D.
7.5. Q.E.D.

A.1.3 Distributed Abstract Multicoordinated Paxos

As an intermediate step in our proof, we introduce a distributed version of the ab-
stract algorithm in the previous section. This algorithm has the variables propCmd,
learned, and bA with the same role as in the non-distributed abstract algorithm.
It introduces the variables dMaxTried, a distributed version of maxTried, and msgs,
used to simulate a message passing system by holding the messages sent between
coordinators, acceptors, and learners.

propCmd The set of proposed commands. It initially equals the empty set.

learned An array of c-structs, where learned([l] is the c-struct currently learned by
learner [. Initially, learned[l] = L for all learners I.

bA A ballot array. It represents the current state of the voting. Initially, E\Aa =0,
bA,[0] = L and bA,[m] = none for all acceptor a and ballot number m > 0.
(Every acceptor casts a default vote for L in ballot 0, so the algorithm begins
with L chosen.)

dMaxTried An array of arrays of c-structs, where dMaxTried[c][m] is either a c-
struct or equal to none, for every coordinator ¢ and balnum m. Initially,
dMaxTried[¢][0] = L and dMaxTried[c][m] = none for every coordinator ¢
and all balnum m > 0.

138 Multicoordinated Paxos

msgs The set of messages sent by coordinators and acceptors. (This set is used to
simulate the message passing among processes.)

The distributed abstract algorithm is described in terms of the following actions.
Its formal specification in TLA" is given in the appendix section A.2.3.

Propose(C) executed by the proposer of command C'. The action is always enabled.
It sets propCmd to propCmdU { C'}, from where coordinators and acceptors can
read C.

Phasela(c,m) executed by coordinator ¢, for balnum m. The action is enabled iff
dMaxTried[c][m] = none. It sends the message (“1a”, m) to acceptors (adds
it to msgs).

Phaselb(a,m) executed by acceptor a, for balnum m. The action is enabled iff

. l;;\a<mand

* (“la”,m) € msgs
It sets bA, to m and sends the message (“1b”, m,bA,) to the coordinators.

Phase2Start(c,m,v) executed by coordinator ¢, for balnum m, and c-struct v. The
action is enabled iff:
e dMaxTried[c][m] = none,

* There exists an m-quorum () such that for all a € (), there is a message
(“1b”, m,bA,) € msgs coming from a, and

* v =we0o, where o € Seq(propCmd), w € ProvedSafe(Q,m,[3), and f3
is any ballot array such that, for every acceptor « in @), 8, = m and c has
received a message (“1b”, m, p) from a with p = f3,.

This action sets dMaxTried[c][m] to v and sends the message (“2a”, m, v) to
acceptors.

Phase2aClassic(c,m,C) executed by coordinator ¢, for balnum m and command C'.
The action is enabled iff

* (€ propCmd and
o dMazxTried[c][m] # none

This action sends the message (“2a”, m, ¢, dMaxTried[c][m] e C) to the ac-
ceptors and sets dMaxTried[c][m] to dMaxTried[c][m]e C.

A.1 Proof of Correctness 139

Phase2bClassic(a, m,v) executed by acceptor a, for balnum m and c-struct v. The
action is enabled iff

i mZEAa,

* there is an m-coordquorum L and a c-struct u such that, for every ¢ € L,
acceptor a has received a phase “2a” message for balnum m with value
w satisfying v E w, i.e., u is a lower bound for the w values, and

* Either bA,[m] equals none and v equals u, or bA,[m] and u are compat-
ible and v equals bA,[m] U u.

It sets bA,[m] to v, lﬁa to m, and sends the message (“2b”, m, v) to the learn-
ers.

Phase2bFast(a, C') executed by acceptor a, for balnum m and command C. The
action is enabled iff

. l;z\ﬁa is a fast balnum,
* bA, [51\4(1] # none, and
e C € propCmd.

It sets bA, [151\4,1] to bAa[l;Aa] ¢ (' and sends a message (“2b”, Z;Aa, bA, [l/);\a] o ()
to the learners.

Learn(l,v) executed by learner [, for c-struct v. It is enabled iff a has received
phase “2b” messages for some round 7 from an i-quorum () and v is a prefix
of the values on those messages. It sets learned[[] to learned[l] U v.

The distributed abstract algorithm implements the the non-distributed version
in the sense that all behaviors of the former are also behaviors of the latter. This
implementation is stated by the following proposition.

Proposition 6 Distributed Abstract Multicoordinated Paxos implements the Abstract
Multicoordinated Paxos specification.

To prove this proposition we provide a refinement mapping from the distributed
version’s states to the non-distributed version’s [].

In the following we replace the variables in the non-distributed algorithms by
overlined versions. That is, we let expression A refer to expression E, in the non-
distributed algorithm specification, where all occurrences of variables propCmd,
maxTried, bA, and learned are replaced by propCmd, maxTried, bA, and learned,
respectively. Non-overlined expressions refer to those in the distributed algorithm.

140 Multicoordinated Paxos

We give the refinement mapping by defining overlined variables based on the dis-
tributed algorithm’s variables in a way that satisfies the non-distributed specifica-
tion.

Let the overlined variables be defined as follows.

propCmd = propCmd
learned = learned

maxTried =

LET Tried(Q, m) = 1F 3¢ € Q : dMazTried[c][m] = none
THEN none
ELSE M {dMaxTried[c][m]:c € Q}

AllTried(m) = {v € {Tried(Q,m) : Q is an m-coordquorum} :

v # none}

IN [m € BalNum — 17 AllTried(m) = {} THEN none

ELSE U AllTried(m)]

To prove that this is a valid refinement mapping and witnesses the implemen-
tation of the Abstract Multicoordinated Paxos by Distributed Abstract Multicoor-
dinated Paxos we must show that the distributed version’s intial states imply the
non-distributed version’s initial states, and that each step of the distributed version
implies a step in the non-distributed version, be it one that changes the overlined
variables or does not change anything (a stuttering step). To simplify these proofs
we first prove some properties of c-structs and of our refinement mapping. (The
first proposition actually regards c-structs in general)

Proposition 7 If, for some ballot number m and ballot array bA, all elements of S are
safe at m in bA, then LS is also safe at m in bA.

By the definition of “safe at”, for all c-structs v choseable at round m in bA and for
all w € S, v E w. Moreover, by the definition of “lower bound”, v is a lower bound
of S and, by the definition of LI, v E LS. Therefore, all elements of S extend v and
all c-structs choosable at m in bA, being safe at m in bA. [J

Proposition 8 AllTried(m) is compatible for m > 0.

Proor: By the definition of glb, the empty set is compatible and U{} = L. If
AllTried(m) is not empty, then it contains the Tried((Q,m) for all) such that
Tried(Q, m) # none. By the definition of Tried and M, if Tried(Q, m) # none,
then it is a prefix of dMaxzTried[c][m] for all ¢ € Q.

Let Tried(Q, m), Tried(R, m) € AllTried(m). By the coord-quorum-assumption,
there exists a coordinator ¢ € @ N R, and AllTried((Q, m) T dMaxTried[c][m] and

A.1 Proof of Correctness 141

AllTried(R,m) E dMaxTried[c][m]. Therefore, dMaxTried[c][m] is an upper
bound to {Tried(Q, m), Tried(R, m)}, and they are compatible. Because its ele-
ments are pairwise compatible and due to CS3, AllTried(m) is compatible. [

Proposition 9 dMaxTried = dmaxTried' = maxTried = maxTried .

Proor: maxTried is defined only over dMaxTried values. If dMaxTried does not
change, then maxTried cannot change. |

Hereinafter we refer to to Distributed Abstract Multicoordinated Paxos as DAP
and Abstract Multicoordinated Paxos as AP As we mentioned before, the proof of
Proposition 6, i.e., that DAP implements the AP is divided in two steps: proving the
implication among the initial states and among the steps. The first step is captured
by Proposition 10 and the second step by Proposition 11, below.

Proposition 10 DAP’s initial state implies AP’s initial state.

PROOF SKETCH: First we prove that DAP’s initial state implies that maxTried is initialized as specified

in AP’s. Because the correct initialization of the other variables are trivially implied (they have the

same initialization), we conclude the proof.

1. maxTried[0] = L
Proor: By the specification of DAB dMaxTried[c][0] = L for each coordinator
c. By the definition of maxTried, Tried, and glb, Tried(Q,0) = L1 for any ().
Therefore, by definition of AllTried, AllTried(0) = L, and by the definition of lub,
maxTried[0] = L.

2. Vm > 0,maxTried[m] = none
Proor: By the specification of DAB dMaxTried[c][m] = none for each coordinator
¢ and round m > 0. By the definition of maxTried and Tried, Tried(Q, m) = none
for any (). Hence, by the definition of AllTried, AllTried(m) = {}. By the definition
of maxTried, maxTried[m] = none for any m > 0.

3. Q.ED.

[

Proposition 11 A DAP step implements an AP step (a possibly stuttering one).

ProoF skETCH: We consider each action of DAP and show that each step either implies a step of

AP or that AP’s variables—propCmd, learned, bA, and maxTried—are left unchanged. We use TLA™
UNCHANGED v notation to indicate that variable (or sequence of variables) v did not change in some
step.

1. AssuME: A C' € Cmd
A Propose(()
PrROVE: Propose(C)

142

Multicoordinated Paxos

1.1. C ¢ propCmd
Proor: By the definition of Propose.
1.2. propCmd’ = propCmd U {C'}
ProoF: By the definition of Propose.
1.3. UNCHANGED (learned, bA, maxTried)
Proor: By the definition of Propose and Proposition 9.
1.4. Q.E.D.

2. ASSUME: A ¢ € Coord

PrOVE:

A m € BalNum
A Phasela(c, m)
UNCHANGED (propCmd, learned,bA, maxTried)

Proor: By the definition of Phasela and Proposition 9.

3. ASSuME: A ¢ € Coord

PRrOVE:

A m € BalNum

A v € CStruct

A Phase2Start(c, m,v)

AV A maxTrigd = none

AV maxTried = none ,

V StartBallot(m, maxTried [m])

V A maxTried # none

A V3o € Seq(propCmd) :

A maxTried/[m] = maxTried[m] e o
A Suggest(m, o)

V UNCHANGED maxTried

A UNCHANGED (propCmd,bA, learned)

3.1. AssuMmE: maxTried[m] = none
R
PrROVE: V StartBallot(m,maxTried [m])

V UNCHANGED maxTried

3.1.1. AssuMe: maxTried' [m] # none

Prove: StartBallot(m, maxTried [m])

3.1.1.1. maxTried/[m] Co
Proo¥F: By the assumption, for all m-coordquorums () such that
Tried(Q, m) € AllTried(m), ¢ € Q, or Tried(Q,m) would equal none
and it would not belong to AllTried(m)’. By the definition of glb,
Tried(Q,m) E dMaxTried[c][m] = v. Therefore, all elements of
AllTried(m)’ are compatible prefixes of v, and v is an upper bound of

AllTried(m)’. But, by the definition of maxTried, maxTried [m] =

A.1 Proof of Correctness 143

LAllTried(m) and by the definition of LI and Assumption 3, maxTried [m]
must be a prefix of v.

3.1.1.2. maxTried[m] = none
PrOOF: By assumption.

3.1.1.3. maxTried/[m] is safe at m in bA
Proor: By the definitions of actions ProvedSafe,
Phase2Start, and Phase2aClassic, for all d € Coord, dMaxTried[d][m]
is first set to a safe value and then simply extended, therefore remain-
ing safe. By the definition of AllTried and Proposition 7, all elements of
AllTried(m)’ are safe. Because maxTried[m] is an extension of such safe
c-structs, it is also safe.

3.1.1.4. maxTried/[m] € Str(propCmd)
Proo¥F: By the definition of action Phase2Start, v € Str(propCmd). But,

by step 3.1.1.1, maxTried/[m] C v and maxTried/[m] is constructible from
a subset of the commands in v. Therefore, by the definition of
Str, maxTried/[m] e Str(propCmd).
3.1.1.5. Q.E.D.
3.1.2. ASSUME: maxTried/[m] = none
PROVE: UNCHANGED maxTried
ProOOF: By assumption.
3.1.3. Q.E.D.
3.2. AssuME: maxTried[m] # none
Prove: V do € Seq(propCmd) :
A maxTried/[m] = maxTried[m] e o
A Suggest(m, o)
V UNCHANGED maxTried
3.2.1. AssuMmE: maxTried [m] # maxTried[m]
Prove: do € Seq(propCmd) :
A maxTried/[m] = maxTried[m] e o
A Suggest(m, o)
3.2.1.1. do € Seq(propCmd) : maxTried/[m] = maxTried[m] e o
Proor: Let @)D be the set of m-coordquorums () such that Tried(Q, m) #
Tried(Q,m)’; clearly by the assumption, @D is not empty and for all
Q € @D, c € (). Moreover, by the definition of Tried, Tried(Q, m) T v.
Let SomeTried(SD, m) = U{AllTried(S,m) : S € SD}. Because for all
Q € QD, Tried(Q,m) = none, SomeTried({S : S is an m-coordquorum
and S ¢ QD}, m) = AllTried(m).
Let) and R be two m-coordquorums such that Q) € QD, R ¢ D, and
QNR # 0. Moreover, let d € QNR. Therefore, Tried(R, m) = Tried(R, m)’,

144 Multicoordinated Paxos

Tried(R,m) € dMaxTried[d][m] and Tried(Q,m) E dMaxTried[d][m],
and either Tried(Q, m) T Tried(R, m) or Tried(R, m) C Tried(Q,m) . In
the first case, SomeTried({S : S is an m-coordquorum and S ¢ (D}, m) =
SomeTried({S : S is an m-coordquorum and S ¢ QD} U {Q}, m), and is
of no interest. In the second case, the equality may not hold, what would
imply that Tried(Q, m) has some command that not in AllTried(m). This
second case must hold for some pair @), R, since by assumption and the
definition of maxTried AllTried(m) # AllTried(m)’. Without loss of gen-
erality, let R be such that Tried(R, m) is maximal; by the definition of C,
Tried(Q,m) = Tried(R, m) e o, for some sequence o. As Tried(Q, m) C
v € Seq(propCmd), o € Seq(propCmd). Finally, by the definition of LI,
AllTried(m) = AllTried(m).
3.2.1.2. AssuMmE: do € Seq(propCmd) :
maxTried/[m] = maxTried[m] e o
PROVE: Suggest(m, o)
Proor: All pre and post-conditions of Suggest are assumed:
* maxTried[m] # none,
* o € Seq(propCmd), and
. maxTried/[m] = maxTried[m] e o.
3.2.1.3. Q.E.D.
3.2.2. ASSUME: maxTried/[m] = maxTried[m]
PROVE: UNCHANGED maxTried
Proor: By the assumption.
3.2.3. Q.E.D.
3.3. UNCHANGED (propCmd,bA, learned)
Proor: This is trivially true, because variables propCmd, bA, and learned are
kept unchanged in Phase2Start.
3.4. Q.E.D.

4. AssuME: A ¢ € Coord

Am € BalNum
A C € propCmd
A Phase2aClassic(c, m, C)

PrROVE: AV Suggest(m, (C))
V UNCHANGED maxTried
A UNCHANGED (propCmd, learned,bA)

4.1. V Suggest(m, (C))

V UNCHANGED maxTried

A.1 Proof of Correctness 145

ProOF SKETCH: A Phase2aClassic step either increases maxTried[m] by C or leaves it as it is.
In the first case, it implements a Suggest step; in the second it implements a stutering step.
We first show conditions that are necessary and sufficient for maxTried to stay unchanged on a
Phase2aClassic step. We then show that if it changes, then a Suggest step follows.

4.1.1. ASSUME: maxTried/[m] # none
Prove: maxTried[m] # none
Proor: The proof is by contradiction. Suppose that maxTried[m] = none.
Then, by the definitions of AllTried and Tried, for all coordinator quorum m-
coordquorum () there is a coordinator d € () such that dMaxTried[d][m] =
none, and Tried((Q, m) = none. By the assumption, for some m-coordquorum
Q, Tried(Q, m)" # none. Because Tried((Q, m) = none and Tried(Q,m) #
none and only dMazTried[c][m] was changed, ¢ must be in in () and
dMazxTried[c][m] = none, but this contradicts a pre-condition of steps of
type Phase2aClassic.
4.1.2. ASSUME: maxTried/[m] # maxTried[m]
PROVE: maxTried/[m] = maxTried[m] e C
ProoF: By the assumption, maxTried/[m] # none, and by the step 4.1.1,
maxTried[m] # none.
Let QD be the set of m-coordquorums () such that Tried(Q, m) # Tried(Q, m)’;
clearly, VQ € QD,c € Q.
By the assumption, (D is not empty and for all Q € QD, Tried(Q, m) E
dMaxTried[c][m] and Tried(Q, m) T dMazTried[c][m]e C. Because only
dMazTried[c][m] was changed and Tried(Q), m) # Tried(Q,m), and by
the definition of M, Tried(Q, m) = Tried(Q, m)e C.
Therefore, maxTried = LU(AUTried(m) U {Tried(Q,m)e C : Q € ()D}), and
the set AllTried(m) U {Tried((Q),m)e C :) € QD} is compatible. Because
the first set contains all commands of the second but C, the least upper
bound of the first, maxTried differs from the least upper bound of the union,
maxTried only by the adition of C' to the first, and, because they are compat-
ible, maxTried = maxTr:ied o(
4.1.3. AssuMmEi: maxTried = maxTriede C
Prove: Suggest(m, (C))
4.1.3.1. (C) € Seq(propCmd)
Proor: Because C' € propCmd and by the definition of Seq.
4.1.3.2. maxTried[m] # none
Proor: By step 4.1.1.
4.1.3.3. maxTried/[m] = maxTried[m] e (C)]
ProOOF: By step 4.1.2.
4.1.3.4. Q.E.D.

146 Multicoordinated Paxos

4.1.4. Q.E.D.

4.2. UNCHANGED (propCmd,bA, learned)
Proor: By the definition of Phase2aClassic, variables propCmd, bA, and learned
are kept unchanged.

4.3. Q.E.D.

5. ASSUME: A a € Acceptor
A m € BalNum
A Phaselb(a, m)
ProVE: JoinBallot(a,m)
ProoF: Any Phaselb step clearly implements a JoinBallot step, as all the latter’s
pre and post conditions are also required by the first.

6. ASSUME: A a € Acceptor
A m € BalNum
A v € CStruct
A Phase2bClassic(a, m,v)
Prove: ClassicVote(a, m,v)
6.1. m > DbA,
Proor: By the definition of Phase2bClassic.
6.2. v is safe at round m in bA
Proor: Phase2bClassic has as pre-condition that a has received a “2a” message
from all coordinators in some coord-quorum L for round I;;\a, and that there
is a c-struct u such that for all such messages, u is a prefix of the value w in
each one. Messages “2a” are sent in actions Phase2Start and Phase2aClassic,
and in both cases the value sent is set to dMaxTried[c][m], where ¢ is the
sender coordinator and m is the round in which the message was sent. Be-
cause dMaxTried[c][m] = none is a pre-condition to action Phase2Start and it
changes dMaxTried[c][m] to something different from none and no other step
changes it back to none, a Phase2Start step happens only once for a given ¢ and
m. A Phase2aClassic action is only enabled after this Phase2Start step, and it
just appends some c-seq to the previous value of dMaxTried[c][m]. Therefore,
the value set to dMaxTried[c][m] by the Phase2Start step is always a prefix of
dMaxTried[c][m] in future states. Let firstTried[c][m] be such initial value. By
the definition of Phase2Start and Proposition 7, firstTried[c][m] is safe at m in
bA. Because firstTried[c][m] is a prefix of any value sent by ¢ on “2a” messages
in round m, it is also a prefix of u, and u must be safe. Since v is equal to or an
extension of u, it is also safe.
6.3. v C maxTried[m]

A.1 Proof of Correctness 147

Proor: Let L be the m-coordquorum from which « has received the “2a” mes-
sages in the Phase2BClassic step and u be the common lower bound to all values
received in such messages according to the action pre-condition. By the defini-
tion of Tried in maxTried, by the definition of glb, and because dMaxTried[c][m]
is only extended for any coordinator ¢ and balnum m, u & Tried(L, m). By the
definition of AllTried in maxTried and lub, Tried(l, m) T maxTried[m], and
therefore u C maxTried[m]. Since v C w, it follows that v © maxTried[m]

6.4. V bA,[m] = none

VDbA,[m] E v.

Proor: By the definition of Phase2bClassic.

6.5. bA,[m] =v
Proor: By the definition of Phase2bClassic.

6.6. UNCHANGED (propCmd, maxTried, learned)
Proor: By Proposition 9 and the definition of Phase2bClassic.

6.7. Q.E.D.

7. ASSUME: A a € Acceptor
A C € Cmd
A Phase2bFast(a, C)
Prove: FastVote(a, C)
Proor: Due to Proposition 9, and the definition of Phase2bFast, any Phase2bFast
step is also a FastVote step, as all the latter’s pre and post conditions are also
satisfied by the first.

8. ASSUME: A [€ Learner
A v € CStruct
A Learn(l, v)
Prove: Learn(l,v)
8.1. v is chosen in bA
Proor: The first pre-condition of Learn implies that all acceptors in some m-
quorum () executed action Phase2bFast or Phase2bClassic. Because commands
and c-seqgs can only be appended to bA,[m] in these actions, for all acceptors
a € @, vEbA,[m]. Therefore, by the definition of chosen at, v is chosen at
m in bA, and so is v is chosen at bA.
8.2. A learned’'[l] = learned[l] U v]
A UNCHANGED (propCmd, maxTried,bA)
ProoFr: By the definition of Learn.
8.3. Q.E.D.
ProoF: By the definition of AbstractLearn and steps 8.1 and 8.2.
9. Q.E.D.

148 Multicoordinated Paxos

[

A.1.4 Multicoordinated Paxos

To prove correctness of the algorithm presented in Section 3.3, we first add the
following history variables to the algorithm presented in the previous section.

crnd An array of balnums, where crnd[c] represents the current round of coordina-
tor c. Initially O.

cval An array of c-structs, where cval[c] represents the latest c-struct coordinator ¢
has sent in a phase “2a” message for round crnd[c]. Initially L.

rnd An array of balnums, where rnd[a] is the current round of acceptor a, that is,
the highest-numbered round « has heard of. Initially O.

vrnd An array of balnums, where vrnd[a] is the round at which acceptor a has
accepted the latest value. Initially O.

vval An array of c-structs, where vval[a] is the c-struct acceptor a has accepted at
vrnd[a]. Initially L.

msgs2 A set of messages sent by coordinators and acceptors. This variable is differ-
ent from the original msgs variable.

We now make some simple changes to the algorithm’s actions in order to up-
date these history variables accordingly. Notice that the following algorithm is not
exactly the same as in the previous section. The pre-conditions of actions Phasela,
Phase2Start, and Phase2aClassic are slightly more restrictive. However, it is an obvi-
ous implementation of the previous version.

Propose(C) executed by the proposer of command C'. The action is always enabled.
It sets propCmd to propCmdU{ C'}, from where coordinators and acceptors can
read C.

Phasela(c,m) executed by coordinator ¢, for balnum m. The action is enabled iff
Vj > m : dMaxTried[c][j] = none. It adds message (“la”, m) to msgs and
msgs2.

Phaselb(a,m) executed by acceptor a, for balnum m. The action is enabled iff

« bA, <m

e (“1a”,m) € msgs

A.1 Proof of Correctness 149

It sets l/)z\4a and rnd[a] to m, adds message (“1b”, m,bA,) to msgs and message
(“1b”, m,vval[a],vrnd[a]) to msgs2.

Phase2Start(c,m,v) executed by coordinator ¢, for balnum m, and c-struct v. The
action is enabled iff
* V5 > m : dMaxTried[c][j] = none

* There exists an m-quorum () such that for all a € (@, there is a message
(“1b”, m,bA,) € msgs coming from a.

* v =we0o, where o € Seq(propCmd), w € ProvedSafe(Q,m,[3), and f3
is any ballot array such that, for every acceptor « in @), 8, = m and c has
received a message (“1b”, m, p) from a with p = f,.

This action sets dMaxTried[c][m] and cval[c] to v, crnd[c] to m, and adds
message (“2a”, m, v) to msgs and msgs2.

Phase2aClassic(c,m,C) executed by coordinator ¢, for command C. The action is
enabled iff
e C € propCmd.
o dMazxTried[c][m] # none
* Vi >m:maxTried[c][j] = none

This action adds message (“2a”, m, ¢, dMaxTried[c][m]eC') to msgs and msgs2,
and sets dMaxzTried[c][m] and cval[c] to dMaxTried[c][m]e C.

Phase2bClassic(a, m,v) executed by acceptor a, for balnum m and c-struct v. The
action is enabled iff

i mZEAa,

* there is an m-coordquorum L and a c-struct u such that, for every ¢ € L,
acceptor a has received a phase “2a” message for balnum m with value
w satisfying v E w, i.e., u is a lower bound for the w values, and

* Either bA,[m] equals none and v equals u, or bA,[m] and u are compat-
ible and v equals bA,[m] U u.

It sets bA,[m] and vval[a] to v, l;;\a, rnd[a], and vrnd[a] to m, and adds
message (“2b”, m, v) to msgs and msgs2.

Phase2bFuast(a, C') executed by acceptor a, for balnum m and command C. The
action is enabled iff

150 Multicoordinated Paxos

. l/)z\qa is a fast balnum,
. bAa[l;Aa] # none, and
* C € propCmd.

It sets bAa[E\Aa] and vval[a] to bAa[l;;\a] e (' and adds message
(“2b”,bA,, bA,[bA,] ® C) to msgs and msgs2.

Learn(l,v) executed by learner [, for c-struct v. Executed by learner /. It is enabled
iff a has received phase “2b” messages for some round i from an i-quorum
() and v is a prefix of the values on those messages. It sets learned[l] to
learned[1] U v.

Variables crnd, cval, rnd, vrnd, vval, and msgs2 appear in no pre-condition and
are clearly history variables (they satisfy Abadi and Lamport’s conditions H1-5 of
[D). This implies that the resulting algorithm is equivalent
to (i.e., accepts the same behaviors as) the previous one without such variables. The
following invariants can be easily proved for this new algorithm:

) B A dMaxTried[c][k] # none
InvDAL: ernd[c] =k < A Yj>k:dMazxTried[c][j] = none
InvDA2: cval[c] = dMazTried[c][crnd[c]]

InvDA3: rnd[a] = 1;1\4,1

) B A DA, k] # none
InvDA4: vrnd[a] =k < A Vj>k:bA.[j] = none
InvDA5: vval[a] = bA,[vrnd[a]]

InvDA6: (“la”, m) € msgs < (“1a”, m) € msgs2

InvDA7: (“1b”,m,p) € msgs < (“1b”, m, vval, vrnd) € msgs2, where vrnd is the
highest balnum £ such that p[k] # none and vval equals p [vrnd].

InvDAS8: (“2a”,m,v) € msgs <= (“2a”, m,v) € msgs2
InvDA9: (“2b”, m,v) € msgs < (“2b”, m,v) € msgs2

We can use these invariants to rewrite the pre-conditions of the previous algo-
rithm’s actions in the following way:

Propose(C) executed by the proposer of command C'. The action is always enabled.
It sets propCmd to propCmdU { C'}, from where coordinators and acceptors can
read C.

A.1 Proof of Correctness 151

This action remains the same.

Phasela(c,m) executed by coordinator ¢, for balnum m. The action is enabled iff
crnd[c] < m. It adds message (“1a”, m) to msgs and msgs2.
By invariant InvDA1.

Phaselb(a,m) executed by acceptor a, for balnum m. The action is enabled iff

e rndla]l <m

e (“la”,m) € msgs2

It sets I;;Xa and rnd[a] to m, adds message (“1b”, m,bA,) to msgs and message
(“1b”, m,vval[a],vrnd[a]) to msgs2.
By invariants InvDA3 and InvDA6.

Phase2Start(c,m,v) executed by coordinator ¢, for balnum m, and c-struct v. The
action is enabled iff

e crnd[c] <m

* There exists an m-quorum () such that for all a € @, there is a message
(“1b”, m, vval, vrnd) € msgs2 coming from a.

* v = we o, where o € Seq(propCmd), w € ProvedSafe((),1bMsg) (see
ProvedSafe as defined in Section 3.3) , and 1Msg is a mapping from every
acceptor a in @) to the phase “1b” message of the previous condition
coming from a.

This action sets dMaxTried[c][m] and cval[c] to v, crnd[c] to m, and adds
message (“2a”, m, v) to msgs and msgs2.

By invariants InvDA1 and InvDA6. The equivalence between ProvedSafe(Q,m,[3) (of Sec-
tion A.1.3) and ProvedSafe(Q, 1bMsg) (of Section 3.3) is given by InvDA6.

Phase2aClassic(c,m,C) executed by coordinator ¢, for command C. The action is
enabled iff
e (C € propCmd.
e crnd[c]=m
This action adds message (“2a”, m, ¢, cval[c] ® C) to msgs and msgs2, and sets

dMazTried[c][m] and cval[c] to cval[c] e C.
By invariants InvDA1 and InvDAZ2.

Phase2bClassic(a, m,v) executed by acceptor a, for balnum m and c-struct v. The
action is enabled iff

152 Multicoordinated Paxos

* m>rndlal,

* there is an m-coordquorum [and a c-struct u such that, for every c € L,
acceptor a has received a phase “2a” message (through msgs2) for bal-
num m with value w satisfying v E w, i.e., u is a lower bound for the w
values, and

* Either vrnd[a] < m and v equals u, or vrnd[a] = m, vval[a] and u are
compatible, and v equals vval[a] U u.

It sets bA,[m] and wval[a] to v, bA,, rnd[a], and vrnd[a] to m, and adds
message (“2b”, m, v) to msgs and msgs2.
By invariants InvDA3, InvDA4, InvDAS.

Phase2bFast(a, C) executed by acceptor a, for balnum m and command C. The
action is enabled iff

* rnd[a] is a fast balnum,
* rnd[a] = vrnd[a], and

e C € propCmd.

It sets bA, [51\4(1] and vval[a] to vval[a]e C and adds message (“2b”, m, vval[a]e
C) to msgs and msgs2.

By invariants InvDA3, InvDA4, InvDAS5, and the fact that rnd[a] > vrnd[a], which can be
inferred by the definition of a ballot array and invariants InvDA3 and InvDA4.

Learn(l,v) executed by learner [, for c-struct v. Executed by learner /. It is enabled
iff a has received (through msgs2) phase “2b” messages for some round : from
an j-quorum () and v is a prefix of the values on those messages. It sets
learned[1] to learned[l] U v.

By invariant InvDA9.

The resulting algorithm now has variables bA, dMaxTried and msgs as history
variables, since they do not appear on any action’s pre-condition and are only up-
dated. This algorithm is, therefore, equivalent to one that does not contain such
variables, which we present below.

Propose(C) executed by the proposer of command C'. The action is always enabled.
It sets propCmd to propCmdU { C'}, from where coordinators and acceptors can
read C.

Phasela(c,m) executed by coordinator ¢, for balnum m. The action is enabled iff
crnd[c] < m. It adds message (“1a”, m) to msgs2.

A.1 Proof of Correctness 153

Phaselb(a,m) executed by acceptor a, for balnum m. The action is enabled iff

e rd[a]l <m

* (“la”,m) € msgs2
It sets rnd[a] to m, and adds message (“1b”, m,vval[a],vrnd[a]) to msgs2.

Phase2Start(c,m,v) executed by coordinator ¢, for balnum m, and c-struct v. The
action is enabled iff

e crnd[c] <m

* There exists an m-quorum () such that for all a € (), there is a message
(“1b”, m, vval, vrnd) € msgs2 coming from a.

* v = we 0o, where o € Seq(propCmd), w € ProvedSafe((), 1bMsg), and
1Msg is a mapping from every acceptor a in () to the phase “1b” message
of the previous condition coming from a.

This action sets cval[c] to v, crnd[c] to m, and adds message (“2a”, m, v) to
msgs2.

Phase2aClassic(c,m,C) executed by coordinator ¢, for command C. The action is
enabled iff
e C € propCmd.
e crnd[c]=m

This action adds message (“2a”, m, ¢, cval[c] ® C') to msgs2, and sets cval[c] to
cval[c] e C.

Phase2bClassic(a, m,v) executed by acceptor a, for balnum m and c-struct v. The
action is enabled iff

e m>rndla],

* there is an m-coordquorum L and a c-struct u such that, for every ¢ € L,
acceptor a has received a phase “2a” message (through msgs2) for bal-
num m with value w satisfying v E w, i.e., u is a lower bound for the w
values, and

* Either vrnd[a] < m and v equals u, or vrnd[a] = m, vval[a] and u are
compatible, and v equals vval[a] U u.

It sets wal[a] to v, rnd[a] and vrnd[a] to m, and adds message (“2b”, m, v) to
msgs2.

154 Multicoordinated Paxos

Phase2bFast(a, C) executed by acceptor a, for balnum m and command C. The
action is enabled iff

* rnd[a] is a fast balnum,
e rnd[a] = vrnd[a], and

e C € propCmd.
It sets vval[a] to vval[a]e C and adds message (“2b”, m, vval[a]e C) to msgs2.

Learn(l,v) executed by learner [, for c-struct v. Executed by learner /. It is enabled
iff a has received (through msgs2) phase “2b” messages for some round 7 from
an i-quorum () and v is a prefix of the values on those messages. It sets
learned[1] to learned[l] U v.

The algorithm presented in Section 3.3 is a stricter implementation of the algo-
rithm above, which can be easily verified by simply comparing their actions. This
concludes the proof that Multicoordinated Paxos satisfies the safety requirements
of Generalized Consensus. Section A.2.4 presents the unambiguous TLA* specifica-
tion of the basic algorithm presented in Section 3.3 and Section A.2.5 presents its
complete TLA" specification including actions for collision recovery and a simpli-
fied version of the mechanism for reducing the number of disk writes presented in
Section 3.4.5.

A.1.5 Collision Recovery

The mechanisms for collision recovery described in Section 3.4.4 simply simulate
the execution of basic actions of the algorithm in a way compatible with the actual
behavior. The interpretation of a collision as a phase “1a” message for the following
balnum, for example, simulates a Phasela action for that balnum. Since action
Phasela simply sends a “la” message with no guarantee of delivery, the process
detecting the collision could be the only one receiving such a message. Given that
these basic actions are already proved correct, such mechanisms cannot violate the
safety properties of our specification.

A.1.6 Liveness

That the basic algorithm provides means for ensuring liveness is easy to see, since
new rounds of any type can always be started and a classic round has the same live-
ness requirements as Classic Paxos. The discussion in Section 3.4.7 extends Multico-
ordinated Paxos in this sense and sketches its liveness conditions. We now prove that
the extended Multicoordinated Paxos algorithm presented in Section 3.4.7 satisfies

A.1 Proof of Correctness 155

the Liveness property of Generalized Consensus, given that its liveness condition is
eventually satisfied. We refer to the algorithm as EMCP

Proposition 12 If there is a proposer p, a coordinator ¢, a learner [, a quorum of
acceptors (), and a non-empty set of coordinators C such that the liveness condition
MCLiv(p,L,c,Q,C) holds at some time t, and then forever, then [eventually learns a
c-struct containing the command v proposed by p.

Proor: The proof is divided into the following steps:
1. No coordinator other than ¢ executes action Phasela after t,

By the definition of MCLiv(p,l,¢c,Q,C), only ¢ believes to be leader after instant

t,. Since this is a pre-condition for executing action Phasela in the extended

algorithm, only ¢ does so.

2. There is a time #, > t, after which ¢rnd[c] does not change

Proo¥F skETCH: The proof is divided in two steps. First we prove that only a finite

number rounds may be started by coordinated recovery and then that the same

holds true for rounds started in action Phasela.

2.1. There is a time #; > ¢, after which no coordinated recovery is performed
Proor: Let 7 — 1 be the highest-numbered round in which some message was
sent before ¢,. If the coordinators of i — 1 perceive a conflict in 7 — 1 then they
may perform coordinated recovery to start round 7 by sending “2a” messages
with different c-structs and, hence, another conflict might happen in round :.
Due to MCLiv(p,Lc,Q,C), after t, all functional coordinators receive all mes-
sages in the same order in ¢ and, by the determinism of the protocol, they
perceive the same conflicts in 7 and choose the same c-struct to send in the “2a”
message of round i + 1, if performing another coordinated recovery. Therefore,
no conflict happens in round ¢ 4+ 1 or in any bigger round and no more coordi-
nated recoveries are executed. Hence, there is a time ¢; > ¢, after round round
i + 1 started after which no coordinated recoveries are performed.

2.2. There is a time ¢; > ¢] after which action Phasela is not executed anymore
ProOF: By step 2.1, coordinated recovery will not be executed after time ¢, and
by MCLiv(p,l,c,Q,C), uncoordinated recovery can only be executed a limited
amount of times. Hence, there is a time ¢ > #] after which no recovery is
performed.

Due to step 1 there is a finite number of rounds that have been started before
t, by coordinators different from ¢ and by the previous paragraph there is a
time after which no coordinated or uncoordinated recovery is performed and,
therefore, there is a time ¢, > ¢, after which ¢ has will receive no more “skip”
messages informing about rounds bigger than its current one. Hence, ¢ will not
start any bigger round unless it suspects that there are no coord-quorums for
round crnd[c] whose all coordinators are alive. By MCLiv(p,l,c,Q,C), after

156 Multicoordinated Paxos

ty, ¢ will only start rounds whose coordinators do not fail. Hence, there is a
time ¢ > ¢ after which ¢ does not start any round due to suspecting that
coord-quorums are not available for its current round.
If ¢ is bigger than or equal to ¢;””, then Phasela is not executed after #".
2.3. AssuME: 1. There is a time t; > ¢, after which no coordinated recovery is
performed.
2. There is a time ¢, > ¢; after which action Phasela is not executed
anymore
Prove: There is a time ¢, > ¢;" after which action Phase2Start(c,1) is ex-
ecuted, where ¢ the highest-numbered round for which ¢ executed
action Phasela
Proor: By the definition of the extended algorithm, ¢ keeps retransmitting the
“la” message for round : to all acceptors. By assumption, acceptors in () do
not crash after ¢, and, therefore, receive such “la” messages. After they execute
action Phaselb for round i, they keep re-sending their 15 messages and ¢ will
eventually execute Phase2Start.
2.4. Q.ED.
ProoF: crnd[c] can only be changed by executing action Phase2Start or by
performing coordinated or uncoordinated recovery, and Phase2Start can only
be executed for a round after Phasela has been executed for the same round.
By steps 2.1 and 2.2 there is a time #; after which no recovery or Phasela
actions is executed. By step 2.3, c eventually executes action Phase2Start for
the highest-numbered round for which it has executed action Phasela at some
instant t; > .
3. There is a time ¢, > ¢, after which action Phase2Start(d,crnd[c]) will have been
executed by every coordinator d of round crnd[c].
Proor: By the same reasoning of step 2.
4. There is a time ¢; > ¢, after which the command v € M {cval[d] : d is a coordi-
nator of round crnd|[c]}.
ProOOF: By steps 2 and 3, there is a time ¢; after which all coordinators of round
crnd[¢] can execute action Phase2aClassic. By assumption, all conflicting propos-
als received in crnd[c] are received in the same order and, therefore, added to
cval[d] in the same order by every acceptor d. Hence, these c-structs are com-
patible.
By the protocol specification, proposer p retransmits v and all coordinators of
round crnd[c] eventually receive it. Therefore, there is a time #; > ¢, after which
v is part of cval[d] of any coordinator d of round crnd[c]. Since they are all
compatible, by CS4, v is contained in their greatest lower bound.
5. There is a time ¢, > t; after which v € M {wal[a] : e« € Q} and vrnd[a] =
crnd[c],a € Q.

A.1 Proof of Correctness 157

Proor: By step 2, no new rounds are created after some time ¢, > f,. Hence, no ac-
ceptor can accept any value in a round bigger than crnd[c] after t,. By step 4, all
c-structs sent to acceptors in “2a” messages are compatible and because coordina-
tors keep retransmitting their “2a” messages, all acceptors in () eventually receive
one containing v from every acceptor in some coord-quorum for round crnd[c].
Hence, by the definition of the algorithm, every acceptor a eventually accepts
some c-struct containing v that is compatible with the c-structs accepted by the
other acceptors. Hence, there is a time ¢, > ¢; after which v € M{wval[a] : a € Q}
and vrnd[a] = crnd[c], a € Q.

6. Eventually / learns a c-struct containing v
Proor: By steps 5 and 2 and the specification of EMCE learners eventually re-
ceived compatible c-structs from all acceptors in () in round crnd[c] containing
v. Hence, [eventually learns a c-struct containing v.

7. Q.E.D.

158 Multicoordinated Paxos

A.2 TLATY Specifications

A.2.1 Helper Specifications
Order Relations

This module was defined in [].

MODULE OrderRelations ‘
We make some definitions for an arbitrary ordering relation = on a set S. The module will be used
by instantiang E and S with a particular operator and Set.

CONSTANTS S, _C _

We define IsPartialOrder to be the assertion that T is an (irreflexive) partial order on a set .S, and
IsTotalOrder to be the assertion that it is a total ordering of S.
IsPartialOrder =

AVu,v,we S:(uEVAWE w)=(ul w)

AVu,veS (WEVAWEu) = (u=v)

IsTotalOrder =
A IsPartialOrder
AVu,ve€S:(uEv)V(vEu)

We now define the glb (greatest lower bound) and lub (least upper bound) operators. To define
GLB, we first define IsLB(lb, T') to be true iff [b is a lower bound of T, and IsGLB(lb, T') to be
true iff (b is a glb of T'. the value of GLB(T) is unspecified if T has no glb. The definition for upper
bounds are analogous.

A

IsLB(lb, T) = AlbeS
AVve T:IbCw

IsGLB(lb, T) = AIsLB(lb, T)
AVYveS:IsLB(v, T)=(vEID)

GLB(T) = cHOOSE [b € S : IsGLB(Ib, T)
vlw = GLB({v, w})
IsUB(ub, T) = Aube S

AVve T:vCub

IsSLUB(ub, T) = A IsUB(ub, T)
AVveS:IsUB(v, T)= (ubC v)

A

LUB(T) = CHOOSE ub € S : IsLUB(ub, T)
vUw = LUB({v, w})

Command Structs

This module was defined in [].

A.2 TLA" Specifications 159

MODULE CStructs

EXTENDS Sequences The Sequences module defines the operation Seq

We declare the assumed objects as parameters. We use Bottom instead of L .
CONSTANTS Cmd, CStruct, _e_, Bottom

We write v x* o as the overloaded version of v @ ¢ for a command sequence o. The recursive
deﬁnitig)n below defines the function conc[w, t] = w *xt.
v kks =
LET conc[w € CStruct, t € Seq(Cmd)]
IFt = () THEN w
ELSE conc[w e Head(t), Tail(t)]

IN conclv, s]

Str(P) = {Bottom %xs : s € Seq(P)}

Our algorithms use a value none that is not a c-struct and extend the relation C to the element none
so that none C none, none IZ v, and v IZ none for any c-struct v.
none = CHOOSE n : n ¢ CStruct
vEw = V Av € CStruct

A w € CStruct

Ads e Seq(Cmd) : w = v *xs

V Av = none

A w = none

vCw = (vE w)A(v# w)

We now import the definitions of the OrderRelations module with CStruct substituted for S and E
substituted for =<

INSTANCE OrderRelations WiTH S «— CStruct

We now define compatibility of c-structs and of sets of c-structs, and of contains, giving them obvious
operator nomes.
AreCompatible(v, w) = Fub € CStruct : IsUB(ub, {v, w})
IsCompatible(S) = VYo, w € S : AreCompatible(v, w)
Contains(v, C) = 35, t € Seq(Cmd) :
v = ((Bottom **s) e C) *xt

Here are the formal statements of assumptions CS0-CS4.

cSo

Vv e CStruct, C € Cmd : ve C € CStruct

CcS1 CStruct = Str(Cmd)

0S2 = IsPartialOrder

CS3 = V P e susser Cmd \ {{}} :
AV v, we Str(P):
Avnw € Str(P)
AIsGLB(vMw, {v, w})
A AreCompatible(v, w) = AvUw € Str(P)

160 Multicoordinated Paxos

AIsLUB(vUw, {v, w})

CS4 = Yo, w € CStruct, C € Cmd :
AreCompatible(v, w) A Contains(v, C) A Contains(w, C) =
Contains(v M w, C)

ASSUME CSOA CS1A CS2A CS3 A CS4

Paxos Constants

This module was defined in [], but was extended as needed to define
multicoordinated algorithms. For example, it was extended with the definition of
CoordQuorum(m).

MODULE PazosConstants ‘
This module defines the data structures for the abstract algorithm. It is basically the same module
PazxosConstants found in the Generalized Paxos paper, except for the introduction of constants
Coord and CoordQuorum(_), and assumption CoordQuorumAssumption.
EXTENDS CStructs, FiniteSets

Module FiniteSets defines IsFiniteSet(S) to be true iff S is a finite set

We introduce the parameter IsFast, where IsFast(m) is true iff m is a fast ballot number. The
ordering relation = on ballot numbers is also a parameter.

CONSTANTS BalNum, Zero, - < _, IsFast(_)

We assume that Zero is the first balnum, and that = is a total ordering of the set BalNum of
balnums.
ASSUME A Zero € BalNum
ALET PO = INsTANCE OrderRelations
WITH S < BalNum, & « =
IN PO!lIsTotalOrder

We define i < j to be true iff ¢ < j for two different balnums ¢ and j
i=j = AIPAEED
If B is a set of ballot numbers that contains a maximum element, then Maxz(B) is defined to equal

that maximum. Otherwise, its value is unspecified.
Maz(B) = cHOOSEi € B:Vj€ B:j=i

|

1
This section of the module is the only part that differs the original PazosConstants module presented
in the Generalized Pazos paper. We have added the constants Coord and CoordQuorum, and the
assumptions that coordinator quorums are sets of coordinators which intersect if they refer to the
same ballot number.

CONSTANTS Learner, Acceptor, Quorum(_), Coord, CoordQuorum(_)

QuorumAssumption =
Vi € BalNum :
A Quorum(i) € sUBSET Acceptor

A.2 TLA" Specifications 161

AV j € BalNum :
AY Q € Quorum(i), R € Quorum(j): QN R # {}
A IsFast(j) =
Y Q € Quorum(z), R1, R2 € Quorum(j) :
QNRINR2#{}

ASSUME QuorumAssumption

CoordQuorumAssumption =
Vi € BalNum :
A CoordQuorum(i) € suBseT Coord
AY Q, R € CoordQuorum(i): Q N R # {}

AsSUME CoordQuorumAssumption
|

1
We define BallotArray to be the set of all ballot arrays. We represent a ballot array as a record,
where we write 8,[m] as f.vote[m] and f8, as 8.mbal[a].
BallotArray =
{beta € [vote : [Acceptor — [BalNum — CStruct U {none}]],
mbal : [Acceptor — BalNum]] :
Y a € Acceptor :

A beta.vote[al[Zero] # none

A IsFiniteSet({m € BalNum : beta.vote[a][m] # none})

AY m € BalNum :

(beta.mbal[a] < m) = (beta.vote[a][m] = none)}

We now formalize the definitions of chosen at, safe at, etc. We translate the English terms into
obvious operator names. For example, IsChosenAt(v, m, 8) is defined to be true iff v is chosen
at m in 8 , assuming that v is a c-struct, m is a balnum, and 8 a ballot array. (We don’t care what
IsChosenAt(v, m, B) means for other values of v, m, and 3.) We also assert the three propositions
as theorems.

IsChosenAt(v, m, beta) =
3Q € Quorum(m):Va € Q: (v beta.vote[a][m])

IsChosenIn(v, beta) =
dm € BalNum : IsChosenAt(v, m, beta)

IsChoosableAt(v, m, beta) =
3Q € Quorum(m):
Yae Q:(m= beta.mbal[a]) = (v C beta.vote[a][m])

IsSafeAt(v, m, beta) =
V k € BalNum :
(k<m)=>VYwe CStruct :
IsChoosableAt(w, k, beta) = (w E v)

IsSafe(beta) =
Y a € Acceptor, k € BalNum :
(beta.vote[a][k] # none) = IsSafeAt(beta.vote[a][k], k, beta)

THEOREM Proposition 1

162 Multicoordinated Paxos

V beta € BallotArray :
IsSafe(beta) = IsCompatible({v € CStruct : IsChosenIn(v, beta)})

ProvedSafe(Q, m, beta) =
LET k = Maz({i € BalNum :
(i<m)A(Fa e Q: beta.vote[a][i] # none)})

RS = {R € Quorum(k):Vae€ QnR: beta.vote[a][k] # none}
g(R) = GLB({beta.vote[a][k]:a € QNR})
G = {g(R): R e RS}

IN IF RS = {} THEN {beta.vote[a][k] :
a € {be Q :beta.vote[b][k] # none}}
ELSE IF IsCompatible(G) THEN {LUB(G)}
ELSE {}

THEOREM Proposition 2
V' m € BalNum\ {Zero}, beta € BallotArray :
VY Q € Quorum(m) :
A IsSafe(beta)
AVYa € Q:m = beta.mballa]
= Vv € ProvedSafe(Q, m, beta) : IsSafeAt(v, m, beta)

IsConservative(beta) =
VY m € BalNum, a, b € Acceptor :
A —IsFast(m)
A beta.vote[al[m] # none
A beta.vote[b][m] # none
= AreCompatible(beta.vote[a][m], beta.vote[b][m])

THEOREM Proposition 3
Y beta € BallotArray :
IsConservative(beta) =
Y m € BalNum\ {Zero} :
Y Q € Quorum(m) : ProvedSafe(Q, m, beta) # {}

A.2.2 Abstract Multicoordinated Paxos

This module specifies an abstract version of the Multicoordinated Paxos algorithm.
It is used as the first step in the proof of correctness of Multicoordinated Paxos.

MODULE AbstractMCPazos ‘

This module specifies the Abstract MultiCoordinated Paxos algorithm. It resembles the specification
of the Abstract Generalized Paxos algorithm presented in the Generalized Paxos paper, but some
changes are required since we do not have a minTried variable.

EXTENDS PazosConstants

VARIABLES propCmd, maxTried, bA, learned

Invariants

A.2 TLA" Specifications

163

Type invariant.
Typelnv = ApropCmd C Cmd
A learned € [Learner — CStruct]
A bA € BallotArray
A mazTried € [BalNum — CStruct U {none}]

Other invariants satisfied by the algorithm.

maz TriedInvariant =
V'm € BalNum :
(maxTried[m] # none) =
A mazTried[m] € Str(propCmd)
A IsSafe At(maxTried[m], m, bA)

bAInvariant =
Y a € Acceptor, m € BalNum :
(bA.vote[a][m] # none) =
A IsSafeAt(bA.vote[a][m], m, bA)
A~ IsFast(m) = (bA.vote[a][m] E mazTried[m])
A IsFast(m) = (bA.vote[a][m] € Str(propCmd))

learnedInvariant =
V1 € Learner : Alearned[l] € Str(propCmd)
A3S € suBser CStruct :
A IsFiniteSet(S)
AYv e S : IsChosenin(v, bA)
Alearned[l] = LUB(S)

Actions

Propose(C) specifies the action of proposing command C'
Propose(C) =

A C ¢ propCmd

A propCmd’ = propCmd U {C}

A UNCHANGED (maxTried, bA, learned)

Action JoinBallot(a, m) increases the current ballot number of agent a, setting it to m.

JoinBallot(a, m) =
AbA.mballa] < m
A DA’ = [bA ExcepT !.mbal[a] = m]
A UNCHANGED (propCmd, maxTried, learned)

Action StartBallot(m, w) changes maxTried[m] from none to w, where w is proposed and safe at m

in bA.

StartBallot(m, w) =
A maxTried[m] = none
A IsSafeAt(w, m, bA)
Aw € Str(propCmd)
A mazTried’ = [mazTried EXCEPT ! [m] = w]
A UNCHANGED (propCmd, bA, learned)

164 Multicoordinated Paxos

Action Suggest(m, o) extends maxTried[m] with o if maxTried[m] # none.
The expression [mazTried EXCEPT ![m] = @ #+s] represents a vector (in fact, it is a function)
which is almost the same as mazTried except for entry m (![m] in the expression), which is set to
the previous value of that entry (@ in the expression) extended with command sequence s.
Suggest(m, s) =

A s € Seq(propCmd)

A maxTried[m] # none

A mazTried = [mazTried EXCEPT ! [m] = @ *%*s]

A UNCHANGED (propCmd, bA, learned)

Action ClassicVote(a, v) sets E\Aa to m and bA,[m] to v if
@ bA, =m
(ii) v is safe at m in bA,
(iii) v C maxTried[m], and
(iv) either bA,[m] equals none or v is an extension of it.
ClassicVote(a, m, v) =
AbA.mballa] = m
A IsSafeAt(v, m, bA)
A v E mazTried[m]
A V bA.vote[a][m] = none
V bA.vote[a][m] E v
A DA’ = [bA ExcepT !.mbal[a] = m, !.vote[a][m] = v]
A UNCHANGED (propCmd, mazxTried, learned)

Action FastVote(a, C') extends bAa[l;;\a] with proposed command C if I;Aa is a fast balnum and
bAa[I;Z\a] # none . Expression [bA EXCEPT !.vote[a][bA.mbal[a]] = @ e C] follows the same
principle explained in action Suggest(m, C).
FastVote(a, C) =

A C € propCmd

A IsFast(bA.mbal[a])

A bA.vote[a][bA.mbal[a]] # none

A bA’ = [bA ExcepT !.vote[a][bA.mbal[a]] = @ e C]

A UNCHANGED (propCmd, mazTried, learned)

Action AbstractLearn(l, v) extends learned[[] to the least upper bound of learned[l] and v, if v is
chosen.
AbstractLearn(l, v) =

A IsChosenIn(v, bA)

A learned’ = [learned Except ![I] = @ U v]

A UNCHANGED (propCmd, maxTried, bA)

Complete Specification

Initial predicate
Init = A propCmd = {}
Alearned = [l € Learner — Bottom]
A bA = [vote —
[a € Acceptor —

A.2 TLA" Specifications 165

[m € BalNum — 1F m = Zero THEN Bottom
ELSE none]],
mbal — [a € Acceptor — Zero]]
A mazxTried = [m € BalNum —
IF . = Zero THEN Bottom ELSE none]

Actions combined into the next-state relation.

Nezt = v3C € Cmd : Propose(C)

via € Acceptor, m € BalNum : JoinBallot(a, m)

VvV 3Am € BalNum, w € CStruct : StartBallot(m, w)

Vdm € BalNum, s € Seq(Cmd) : Suggest(m, s)

via € Acceptor, C € Cmd : FastVote(a, C)

Via € Acceptor, m € BalNum, v € CStruct :
ClassicVote(a, m, v)

v 3l € Learner, v € CStruct : AbstractLearn(l, v)

We define Spec to be the complete specification.

A .
Spec = Init AO [NE.Z’t] (propCmd, learned, bA, maxTried)

1 |
I 1

The following theorem asserts the invariance of our invariants

THEOREM
Spec = O(Typelnv A maz TriedInvariant A bAInvariant A learnedInvariant)

The following asserts that our specification Spec implies/implements the specification Spec from
module GeneralConsensus.
GC = INsTANCE GeneralConsensus
THEOREM Spec = GC'! Spec
l

A.2.3 Distributed Abstract Multicoordinated Paxos

This module specifies a distributed version of the abstract algorithm in the previous
section. It adds the exchange of messages and shows how the distributed data
structures can be mapped back to the non-distributed algorithm. It is used as the
second step in the proof of correctness of Multicoordinated Paxos.

| MODULE DistAbsMCPazos
EXTENDS PazosConstants

| |
I 1

The following variables are similar to those in AbstractMCPazos module. They are changed in this
module as they are in AbstractM CPazos.

VARIABLES propCmd, bA, learned

We describe the state of the message-passing system by the value of the variable msgs. I.e., processes
send messages to each othe by simply putting them in the msgs variable.

166 Multicoordinated Paxos

As we do not specify liveness for this protocol, we do not explicitly model message loss. Because
no action is required to happen, messages can simply be ignored, modeling the loss of a message by

never executing the action that would read the message.

Message duplication is modeled by not removing the message from msgs once it is read.
VARIABLE MSgs

We define Msg to be the set of all possible messages. For the sake of clarity and avoiding errors, we
let messages be records instead of tuples. For example, the message (“2a”, m, v) in the text becomes
a record with type field “2a”, bal field m, and val field v.

Msg = [type : {“1a”}, bal : BalNum]
u [type : {“1b”}, bal : BalNum, acc : Acceptor,
vote : [BalNum — CStruct U {none}]]
U [type : {¥2a”}, bal : BalNum, val : CStruct,
coord : Coord]
U [type : {“2b"}, bal : BalNum, acc : Acceptor,

val : CStruct]

dMazxTried is a distributed version of mazTried. Each coordinator stores in dMaxTried the longest
c-struct it has send in a round, and MazTried, below, will map it to maxTried.
VARIABLE dMaxTried

Refinement Mapping

dMazxTried is mapped to mazTried by the MazTried operator. It maps the c-structs tried by all
coordinators in some coord-quorum $@Q$ in some round m to a single c-struct Tried(Q, m). The
set of all Tried(Q, m), AllTried(m), is then mapped to mazTried.
MazTried =
LET Tried(Q, m) = ¥ 3¢ € Q : dMaxTried[c][m] = none
THEN none

ELSE GLB({dMaxTried[c][m]:ce€ Q})

AllTried(m) = {v € {Tried(Q, m): Q € CoordQuorum(m)}
1 v # nonel

IN [m € BalNum — 1¥ AllTried(m) = {}
THEN none
ELSE LUB(AllTried(m))]

Invariants

Type invariant. implies Abstract! Typelnv.
Typelnv = A propCmd S Cmd
A learned € [Learner — CStruct]
A bA € BallotArray

A dMaxTried € [Coord — [BalNum — CStruct U {none}]]
Amsgs € Msg

A.2 TLA" Specifications 167

Actions
Action Propose(C') adds command C to propCmd.
It implements AbstractMCPazos! Propose(C) directly.

Propose(C) =
A C €& propCmd
A propCmd’ = propCmd U {C}
A UNCHANGED (bA, learned, msgs, dMaxTried)

Action Phasela(c, m) executes phase 1a for round m at coordinator ¢, sending a “1a’ message to
all acceptors.

It has no counterpart on AbstractMCPazos.
Phasela(c, m) =

A dMazxTried[c][m] = none

A msgs’ = msgs U {[type — “1a”, bal — m]}

A UNCHANGED (propCmd, bA, learned, dMaxTried)

Action Phaselb(a, m) executes phase 1b for round m at acceptor a.

It implements JoinBallot(a, m), and sends a “1b” message to coordinators.
Phaselb(a, m) =

AbA.mbal[a] < m

A [type — “1a”, bal — m] € msgs

A bA’ = [bA ExcepT !.mbal[a] = m]

A msgs’ = msgs U

{[type — “1b”, bal — m, acc — a, vote — bA.vote[a]]}
A UNCHANGED (propCmd, learned, dMazxTried)

Action Phase2Start(c, m, v) starts phase 2a for round m at coordinator ¢, proposing the c-struct v.
It implements AbstractMCPazos! StartBallot(m, MaxTried’[m]). Because not all Phase2Start

change MazTried[m], some steps are stuttering regarding AbstractM CPaxos.
Phase2Start(c, m, v) =
A dMaxTried[c][m] = none
AT Q € Quorum(m):
AYa € Q:3Imsg € msgs: Amsg.type =“1b”
Amsg.bal =m
A msg.acc = a
ALET 1bMsg = [a € Q — CHOOSE msg € msgs :
A msg.type = “1b”
Amsg.bal =m
A msg.acc = a]

beta = [vote — [a € Q — 1bMsg[a].vote],
mbal — [a € Q — m]]

IN Jw € ProvedSafe(Q, m, beta), s € Seq(propCmd) :
AU = w**xs

168 Multicoordinated Paxos

A dMazTried’ = [dMaxTried Except ![c][m] = v]
A msgs’ = msgs U
{[type — “2a”, bal — m, val — v, coord — c]}
A UNCHANGED (propCmd, bA, learned)

Action Phase2aClassic(c, m, C) is executed by coordinator ¢ of ballot m, for command C. It adds
the command C' to ¢’s previously tried value and forward the new value to the acceptors.

It implements the AbstractMCPazos! Suggest(m, (C)) action.

Phase2aClassic(c, m, C) =
A C € propCmd
A dMaxTried[c][m] # none
A dMazTried =
[dMazTried ExcepT ![c][m] = dMazTried[c][m] **C]
A msgs’ = msgs U
{[type — “2a”, bal — m, val — dMazTried’ [c][m], coord — c]}
A UNCHANGED (propCmd, bA, learned)

Action Phase2bClassic(a, m, v) is executed by acceptor a in round m to accept v.

It implements action AbstractMCPaxos! ClassicVote(a, m, v).

Phase2bClassic(a, m, v) =
AbA.mballa] = m
AI L € CoordQuorum(m), u € CStruct :
AV ce L:3Imsg € msgs: A msg.type =“2a”
A msg.bal = m
A msg.coord = ¢
A u E msg.val
AV AbA.vote[a][m] = none
ANv=1u
V A AreCompatible(bA.vote[a][m], u)
Av=>bA.vote[a][m]Uu
A bA’ = [bA excepT !.vote[a][m] =v, !.mbal[a] = m]
A msgs’ = msgs U {[type — “2b”, bal — m, acc — a, val — v]}
A UNCHANGED (propCmd, learned, dMaxTried)

Action Phase2bFast(a, C') is executed by acceptor a to accept command C, comming directly from
the proposers (fast accept).

It implements the AbstractMCPaxos! FastVote(a, C) action.

Phase2bFast(a, C) =
A C € propCmd
A IsFast(bA.mbal[a])
A bA.vote[a][bA.mbal[a]] # none
A bA’ = [bA excepT !.vote[a][bA.mbal[a]] = @ e C]
A msgs’ = msgs U {[type — “2b”, bal — bA.mbal[a], acc — a,
val — bA .vote[a][bA.mbal[a]]]}
A UNCHANGED (propCmd, learned, dMazxTried)

A.2 TLA" Specifications

169

Action Learn(l, v) executed by learner [to learn c-struct v.

It implements the AbstractM CPaxos! AbstractLearn(a, v) action.
Learn(l, v) =
Adm € BalNum :
1Q € Quorum(m) :
Ya € @Q:3Imsg € msgs: A msg.type =“2b”
Amsg.bal =m
Amsg.acc = a
A v E msg.val
A learned’ = [learned Except ![1] = @ U v]
A UNCHANGED (propCmd, bA, dMazTried, msgs)

Full Specification

Init defines the initial state.
Init = A propCmd = {}
Alearned = [l € Learner — Bottom]
A bA = [vote —
[a € Acceptor —
[m € BalNum — 1F m = Zero THEN Bottom
ELSE none]],
mbal — [a € Acceptor — Zero]]
A dMazxTried = [¢ € Coord — [m € BalNum —
IF m = Zero THEN Bottom
ELSE none]]
A msgs = {}

Next defines how action are combined to generate the next states.

Nezt = v3aC € Cmd : Propose(C)

Vv aAm € BalNum, ¢ € Coord : Phasela(c, m)

V 3m € BalNum, v € CStruct, ¢ € Coord :
Phase2Start(c, m, v)

VvV aAm € BalNum, s € Seq(Cmd), ¢ € Coord :
Phase2aClassic(c, m, s)

Vda € Acceptor, m € BalNum : Phaselb(a, m)

VvV 3Am € BalNum, a € Acceptor, v € CStruct :
Phase2bClassic(a, m, v)

Vda € Acceptor, C € Cmd : Phase2bFast(a, C)

v 3l € Learner, v € CStruct : Learn(l, v)

Spec is defined as the complete specification.

A .
Spec = Init AO [Nemt] (propCmd, bA, learned, dMaxTried, msgs)

The following theorem asserts the invariance of Typelnv
THEOREM Spec = O Typelnv

170 Multicoordinated Paxos

The following theorem implies that there is a refinement mapping from DistAbsMCPazos
to AbstractMCPazxos. Therefore, DistAbsMCPaxos implements AbstractMCPazxos. Because
GeneralConsensus is implemented by AbstractMCPaxos, DistAbsMCPazos also implements
GeneralConsensus

AB
GC

INSTANCE AbstractMCPazxos WiTH maxTried «— MaxTried
INSTANCE GeneralConsensus

e 11>

THEOREM Spec = AB Spec
THEOREM Spec = GC'! Spec

A.2.4 Basic Multicoordinated Paxos

This module specifies the Multicoordinated Paxos algorithm as presented in Sec-
tion 3.3.

MODULE DistMCPazos

EXTENDS PazosConstants
|

I
VARIABLES crnd, cval, rnd, vrnd, vval, learned, msgs
CONSTANT Proposer

cVars
aVars

{crnd, cval)

A
= (rnd, vrnd, voal)

Msg = [type : {“propose”}, emd : Cmd] U
[type : {#1a”}, bal : BalNum] U
[type : {“1b"}, bal : BalNum, vval : CStruct,
vrnd : BalNum, acc : Acceptor] U
[type : {¥2a”}, bal : BalNum, val : CStruct, coord : Coord] U
[type : {2b"}, bal : BalNum, val : CStruct, acc : Acceptor]

Typelnv = A crnd € [Coord — BalNum]
A cval € [Coord — CStruct]
Arnd € [Acceptor — BalNum]
A vrnd € [Acceptor — BalNum]
Awvval € [Acceptor — CStruct]
A learned € [Learner — CStruct]
Amsgs © Msg

Actions

Action Send(msg) implements the sending of message msg.

Send(msg) = msgs’ = msgs U {msg}

DistProvedSafe(@, 1bMsg) below is the TLAT version of the ProvedSafe(Q, 1bMsg) function pre-
sented in Section 3.3.

DistProvedSafe(Q, 1bMsg) =
LET

A.2 TLA" Specifications 171

vals(S) = {1bMsg[a].vval : a € S}
vrnds = {1bMsg[a].vrnd : a € Q}
k = Maz(vrnds)

kacceptors = {a € Q : 1bMsg[a].vrnd = k}

QinterR = {QNR: R € Quorum(k)}

QinterRAtk = {S € QinterR : S C kacceptors}
Gamma = {GLB(vals(inter)) : inter € QinterRAtk}

1IF QinterRAtk = {} THEN vals(kacceptors)
ELSE {LUB(Gamma)}

The following actions are the same as those presented in Section 3.3, just translated into TLA™.

Propose(p, C)

Propose(p, C) =
A Send([type — “propose”, cmd — C1])
A UNCHANGED (cVars, aVars, learned)

Phasela(c, m)
Phasela(c, m) =
A ¢ € UNIoN CoordQuorum(m)
Acrnd[c] <= m
A Send([type — “1a”, bal — m])
A UNCHANGED (¢ Vars, aVars, learned)

Phaselb(a, m)
Phaselb(a, m) =
Arndla]l <m
A [type — “1a”, bal — m] € msgs
A rnd’ = [rnd ExcepT ![a] = m]
A Send([type — “1b”, bal — m, vval — vval[a],
vrnd — vrnd[a], acc — a])
A UNCHANGED (¢ Vars, vrnd, vval, learned)

Phase2Start(c, m)

Phase2Start(c, m) =
Acrnd[c] < m
AT Q € Quorum(m) :
AV a € Q:3msg € msgs: Amsg.type =“1b”
A msg.bal =m
Amsg.acc = a
ALET 1bMsg = [a € Q — CHOOSE msg € msgs :
A msg.type =“1b”
A msg.bal =m
A msg.acc = a]
IN Jw € DistProvedSafe(Q, 1bMsg) :
A crnd’ = [ernd EXCEPT ![c] = m]

172 Multicoordinated Paxos

A cval’” = [cval EXcepT ![c] = w]
A Send([type — “2a”, bal — m, val — w, coord — c])
A UNCHANGED (aVars, learned)

Phase2aClassic(c)

Phase2aClassic(c) =
dmsg € msgs :
A msg.type = “propose”
A cval’ = [cval EXCEPT ![c] = @ @ msg.cmd]
A Send([type — “2a”, bal — crnd[c], val — cval’[c], coord — c])
A UNCHANGED {crnd, aVars, learned)

Phase2bClassic(a, m)

Phase2bClassic(a, m) =
Arnd[a] 2 m
A3J L € CoordQuorum(m) :
AV ce L:3msg € msgs: A msg.type =“2a”
A msg.bal = m
A msg.coord = ¢
A LET
A2aMsg(c) = CHOOSE msg € msgs : A msg.type =“2a”
Amsg.bal =m
A msg.coord = ¢
L2aMsgs
L2aVals

= {A2aMsg(c): c € L}
= {msg.val : msq € L2aMsgs}
IN
AV Avrnd[a]l <m
A vval’ = [vval ExcepT ![a] = GLB(L2aVals)]
V Avrnd[a]l =m
A AreCompatible(vval[a], GLB(L2aVals))
A vval’ = [vval ExcepT ![a] = @ U GLB(L2aVals)]
Arnd’ = [rnd ExcepT ![a] =m]
Awvrnd’ = [vrnd BxCePT ![a] = m]
A Send([type — “2b”, bal — m, val — vval’[a], acc — a])
A UNCHANGED (cVars, learned)

Phase2bFast(a)

Phase2bFast(a) =

A IsFast(rnd[a])

Arnd[a] = vrnd[a]

Admsg € msgs:
A msg.type = “propose”
A vval’ = [vval EXCEPT ![a] = @ @ msg.cmd]
A Send([type — “2b”, bal — rnd[a], val — vval’[a], acc — a])
A UNCHANGED (cVars, rnd, vrnd, learned)

Learn(l)

A.2 TLA" Specifications 173

Learn(l) =
dm € BalNum :
1Q € Quorum(m):
AV a € @Q:3msg € msgs: A msg.type =“2b”
Amsg.bal =m
A msg.acc = a
A LET
A2bMsg(a) = CHOOSE msg € msgs : A msg.type = “2b”
A msg.bal =m
A msg.acc € Q
Q2bMsgs = {A2bMsg(a): a € Q}
Q2bVals = {msg.val : msg € Q2bMsgs}

A learned’ = [learned excepT ![1] = @ U GLB(Q2bVals)]
A UNCHANGED (cVars, aVars, msgs)

Full Specification

Init defines the initial state.

Init = Alearned = [l € Learner — Bottom]
A crnd = [¢ € Coord — Zero]
A cval = [c € Coord — Bottom]
Arnd = [a € Acceptor — Zero]
Avrnd = [a € Acceptor — Zero]
Awvval = [a € Acceptor — Bottom]
A learned = [l € Learner — Bottom]
Amsgs = {}

Next defines how action are combined to generate the next states.

Nexzt = V3p € Proposer, C € Cmd : Propose(p, C)
V3ic¢ € Coord, m € BalNum : Phasela(c, m)
V3¢ € Coord, m € BalNum : Phase2Start(c, m)
V3¢ € Coord : Phase2aClassic(c)
V da € Acceptor, m € BalNum : Phaselb(a, m)
V da € Acceptor, m € BalNum : Phase2bClassic(a, m)
V da € Acceptor : Phase2bFast(a)
v 3l € Learner : Learn(l)

Spec is defined as the complete specification.

A .
Sp@C = Init ANDO [Next] (cVars, aVars,learned, msgs)

1
I 1
The following theorem asserts the invariance of Typelnv.

THEOREM Spec = O Typelnv

The following theorem asserts the DistM CPazxos implements GeneralConsensus

I

174 Multicoordinated Paxos

PropCmd = {m.cmd : m € {mm € msgs : mm.type = “propose”}}
GC = INSTANCE GeneralConsensus WitH propCmd «— PropCmd

THEOREM Spec = GC'! Spec

A.2.5 Complete Multicoordinated Paxos

This module specifies the Multicoordinated Paxos algorithm without dependencies,
also specifying the collision detection mechanisms and a simplified version of the

mechanism presented in Section 3.4.5 to reduce the number of disk writes.
MODULE MultiCoordPazos

The module imports two standard modules. Module Naturals defines the set Nat of naturals and the
ordinary arithmetic operators; module FiniteSets defines IsFiniteSet(s) to be true iff S is a finite
set and defines Cardinality(S) to be the number of elements in S, if s is finite.

EXTENDS Naturals, FiniteSets, CStructs

\

Constants

The next statement declares the specification’s constant parameters, which have the following mean-

ings:
Acceptor the set of acceptors.
Learner the set of learners.
FastNum the set of fast round numbers.
Quorum(i) the set of i-quorums.
Coord the set of coordinators.

CoordQuorum(i) the set of coordinator quorums of round i.

CONSTANTS Acceptor, Learner, FastNum, Quorum(_), Coord,
CoordQuorum(_)

PosNat is defined to be the set of positive integers.
PosNat = Nat \ {0}

RNum is the set of round numbers. A round number is composed of two parts: the incarnation
number and the sequence number.

RNum = Nat x PosNat

A round number with sequence number O is not a valid round number, but it is used to represent
some agents’ states. RType is defined to represent such a set.

RType = Nat x Nat

We must define a precedence relation between round numbers. We define < to represent the
relation that round 7 precedes round j iff 7 has a lower incarnation number than j or they have the
same incarnation number but ¢ has a lower sequence number than j. We also define <X, >, and =
accordingly.

i<j = 1F i[1] <j[1] THEN TRUE ELSE [2] < j[2]

A.2 TLA" Specifications 175

i%j = i=jvi=j
i =<
i =R

Maz(S) is defined to be the maximum of a finite set S of Round Numbers.
Maz(S) = cHoosEi € S:VjeS:ixj

the following statement asserts the assumption that FastNum is a set of round numbers.
ASSUME FastNum € RNum

ClassicNum is defined to be the set of classic round numbers.
ClassicNum = RNum \ FastNum

FairNum(c) is defined to be the set of classic round numbers for which coordinator c is, itself, a
coordinator quorum.

FairNum(c) = {i € ClassicNum : {c} € CoordQuorum(i)}

The following assumption asserts that the set of acceptors is finite. It is needed to ensure progress.
ASSUME IsFiniteSet(Acceptor)

The following asserts the assumptions that Quorum(i) is a set of sets of acceptors, for every round
number ¢, and that the Quorum Requirement holds.
ASSUME Y i € RNum :
A Quorum(i) € sUBSET Acceptor
AV j € RNum:
AY Q € Quorum(i), R € Quorum(j): QN R # {}
A(j € FastNum) =
YV Q € Quorum(i): V R1, R2 € Quorum(j):
QNRINR2#{}

The following asserts the assumptions that CoordQuorum(7) is a set of sets of coordinators, for every
round number 7, and that every coordinator is, itself, a coordinator quorum of infinitely many classic
rounds for every possible incarnation.
ASSUME A Y i € RNum : CoordQuorum(i) C suBseT Coord
AY ¢ € Coord, i € RType :
14 € PosNat : Aj > i[2]
A(i[1], j) € FairNum(c)

The following asserts the assumption that coordinator quorums of the same round should always
intersect.

ASSUME Vi € RNum : VY @, R € CoordQuorum(i): Q N R # {}

Message is defined to be the set of all possible messages. A message is a record having a type field
indicating what message it is, and a rnd field indicating the round number. What other fields, if any,
a message has depends on its type.
Message = [type : {“phasela”}, rnd : RNum]
u [type : {“phaselb’}, rnd : RNum, vval : CStruct,
vrnd : RType, acc : Acceptor]

176 Multicoordinated Paxos

u [type : {“phase2a’}, rnd : RNum, val : CStruct,
coord : Coord]
u [type : {“phase2b”}, rnd : RNum, val : CStruct,

acc : Acceptor]

Variables and State Predicates

The following statement declares the specification’s variables.

VARIABLES rnd, vrnd, vval, crnd, cval, amLeader, sentMsg, proposed,
learned, goodSet

Defining the following tuples of variables makes it more convenient to state which variables are left
unchanged by the actions.

aVars = (rnd, vrnd, vval) Acceptor variables
cVars = {(crnd, cval) Coordinator variables
oVars = (amLeader, proposed, learned, goodSet) Most other variables
vars = (aVars, cVars, oVars, sentMsg) All variables

TypeOK is the type-correctness invariant, asserting that the value of each variable is an element
of the proper set (its “type”). Type correctness of the specification means that TypeOK is an
invariant— that is, it is true in every state of every behavior allowed by the specification.

TypeOK =

A rnd € [Acceptor — RType]
vrnd € [Acceptor — RType]
vval € [Acceptor — CStruct]
crnd € [Coord — RType]
cval € [Coord — CStruct U {none}]
amLeader € [Coord — BOOLEAN]
sentMsg € SUBSET Message
proposed € SUBSET CUmd
learned € [Learner — CStruct)]
goodSet < Acceptor U Coord

>>>>> > > > >

Init is the initial predicate that describes the initial values of all variables.
Init =
Arnd = [a € Acceptor — (0, 0)]
Avrnd = [a € Acceptor — (0, 0)]
Awvval = [a € Acceptor — Bottom]
Acrnd = [¢ € Coord — (0, 0)]
A cval = [c € Coord — none]
A amLeader € [Coord — BOOLEAN]
A sentMsg = {}
A proposed = {}
Alearned = [l € Learner — Bottom]
A goodSet € suBsteT (Acceptor U Coord)

Action Definitions

A.2 TLA" Specifications 177

Send(m) describes the state change that represents the sending of a message m. It is used as a
conjunt in defining the algorithm actions.

Send(msq) = sentMsg' = sentMsg U {msg}

Coordinator Actions

Action Phasela(c, i) specifies the execution of phase 1a of round i by coordinator c¢. Different from
the previous specifications, this action changes crnd and cwval. This is done for liveness, to prevent a
coordinator from continuously starting new rounds. It could be done by adding a new variable but
we just thought that this way was easier and compliant with other Pazos specifications.
Phasela(i, ¢) =
A amLeader[c]
A ¢ € uNIoN CoordQuorum(i)
Aernd[c] <@ Reasons for executing Phasela:
A Vernd[c] = (i[1], 0) 1 - Did not do anything in this incarna-
Vdm € sentMsg : A crnd[c] < m.rnd 2 - Some round interfered with round
Am.rnd[1] = i[1] ernd[c]
Am.rnd < i

V A crnd[c] ¢ FairNum(c) 3 -Round crnd[c] might have colli-
Ai[1] = ernd[c][1] sions and cannot ensure liveness in
A crnd’ = [ernd EXCepT ! [c] = 1] the presence of failures

A cval’” = [cval EXcePT ![c] = none]
A Send([type — “phasela”, rnd — i])
A UNCHANGED (aVars, oVars)

MsgsFrom(Q), i, phase) is defined to be the set of messages in sentMsg of type phase (which may
equal “phaselb” or “phase2b”) sent in round i by the acceptors in the set Q.
MsgsFrom(Q, i, phase) =

{m € sentMsgq : (m.type = phase) A (m.acc € Q) A(m.rnd = i)}

If M is the set of round ¢ phase 1b messages sent by the acceptors in a quorum (), then
IsPickableVal(Q, i, M, v) is true according to the following rule, easily derived from the defini-
tion of ProvedSafe in the paper. It allows the coordinator to send the value v in a phase 2a message
for round i.
IsPickableVal(Q, i, M, v) =

LET vr(a) = (CHOOSE m € M : m.acc = a).vrnd

w(a) = (CHOOSE m € M : m.acc = a).vval

k = Maz({vr(a): a € Q})

RS = {R e Quorum(k):Vae€ QNnR:uvr(a)=k}
g(R) = GLB({{w(a):a<€ RNQ})

G = {g9(R):Re RS}

PrSafe =

IF RS = {} THEN {vv(a):a € {b € Q : vr(b) = k}}
ELSE {LUB(G)}

IN Jw € PrSafe, s € Seq(proposed) : v = w *x*s

Phase2Start(i, ¢, v) specifies the first execution of phase2a in round ¢ by coordinator c.

178 Multicoordinated Paxos

Phase2Start(i, ¢, v) = has executed phasela, but not
AV Acrnd[c] =1 phase2a, or another coordinator has
A cval[c] = none executed phasela.

Vernd[e] <

AT Q € Quorum(i):
AVae€ Q:3Im e MsgsFrom(Q, i, “phaselb”) : m.acc = a
A IsPickableVal(Q, i, MsgsFrom(Q, i, “phaselb”), v)

A cval’” = [cval ExcepT ![c] = v]

A crnd’ = [ernd EXCEPT ! [c] = 1]

A Send([type — “phase2a”, rnd — 1, val — v, coord — c])

A UNCHANGED (aVars, oVars)

Phase2a(i, ¢, v) specifies other executions of phase2a in round i by coordinator c.

Phase2a(i, ¢, v) = has executed Phase2Start.
A crnd[c] =1
A cval[c] # none
A 3C € proposed : v = cval[c] *xC
A cval’ = [cval ExcepT ![c] = v]
A Send([type — “phase2a”, rnd — i, val — v, coord — c])
A UNCHANGED (crnd, aVars, oVars)

NextRound(7) is the round number following 7 in the same incarnation.
NeztRound(i) = [i excerT ![2] = @ + 1]

NextRoundP1b(Q, 1) is the set of phase 1b messages for round NexztRound(i) sent by acceptors in
Q.
NextRoundP1b(Q, 1) = MsgsFrom(Q, NextRound(i), “phaselb”)

Action CoordinatedRecovery(i, ¢, v) specifies our variation of coordinated recovery. With this ac-
tion, coordinator c attempts to recover from a collision in round ¢ by sending round NextRound(%)
phase 2a messages for the value v. To ensure liveness, NextRound(i) should be a fair round, but
this is not a requirement for correctness.
CoordinatedRecovery(i, c, v) =
LET j = NextRound(7)
IN Acrnd[c] <]
AT Q € Quorum(j):
AV a € Q:3m € NextRoundP1b(Q, i) : m.acc = a
A IsPickableVal(Q, 7, NextRoundP1b(Q, 1), v)
A cval’ = [cval EXCePT ![c] = v]
A ernd’ = [ernd ExcepT ![c] = 7]
A Send([type — “phase2a”, rnd — j, val — v, coord — c])
A UNCHANGED {(aVars, oVars)

coordLastMsg(c) is defined to be the last message that coordinator ¢ sent, if crnd[c] > (0, 0).
coordLastMsg(¢) =
IF cval[c] = none
THEN [type — “phasela’, rnd — crnd[c]]
ELSE [type — “phase2a”, rnd — crnd[c],

A.2 TLA" Specifications 179

val — cval[c], coord — c]

In action CoordRetransmit(c), coordinator ¢ retransmits the last message it sent. This action is
a stuttering action (meaning it does not change the value of any variable, so it is a no-op) if that
message is still in sentMsg. However, this action is needed because ¢ might have failed after first
sending the message and subsequently have been repaired after the message was removed from
sentMsg.
CoordRetransmit(c) =

A crnd[c] € RNum

A Send(coordLastMsg(c))

A UNCHANGED (aVars, cVars, amLeader, proposed,

learned, goodSet)

CoordNext(c) is the next-state action of coordinator ¢c—— that is, the disjunct of the algorithm’s
complete next-state action that represents actions of that coordinator.
CoordNext(c) =
v 3ie€ RNum : V Phasela(i, c)
v v € CStruct : V Phase2Start(i, c, v)
V Phase2a(i, ¢, v)
V CoordinatedRecovery(i, c, v)
V CoordRetransmit(c)

Acceptor Actions

Action Phaselb(i, a) specifies the execution of phase 1b for round 7 by acceptor a.
Phaselb(i, a) =

Arndla] <1

A [type — “phasela’, rnd — i] € sentMsg

A rnd’ = [rnd ExcepT ![a] = 4]

A Send([type — “phaselb”, rnd — i, vrnd — vrnd[a],

vval — vval[a], acc — a])
A UNCHANGED (cVars, oVars, vrnd, vval)

MsgsFromCoordQuorum(Q, i, phase) is defined to be the set of messages in sentMsg of type phase
(which may equal “phasela” or “phase2a”) sent in round i by the coordinators in the set Q.
MsgsFromCoordQuorum(Q, r, phase) =
{m € sentMsg : A (m.type = phase)
A (m.coord € Q)
A(m.rnd = 1)}
Action Phase2b(i, a, v) specifies the execution of phase 2b for round 7 by acceptor a, upon receipt
of either a phase 2a message or a proposal (for a fast round) with value v. This action actually
implements actions Phase2bClassic and Phase2bFust of the previous specifications
Phase2b(i, a, v) =
A rndla]l X
A Vorndla] <1
Vvalla] C v
A v3Q € CoordQuorum(i), u € CStruct :
AV ce Q:3Im e MsgsFromCoordQuorum(Q, i, “phase2a”) :

180 Multicoordinated Paxos

A ¢ = m.coord
A u E m.val
AV Avrnd[a] <14
ANv=u
V Avrndla] =1
A AreCompatible(vval[a], u)
Av=wval[a]Uu
V Ai € FastNum
Avrndla]l =1
A3 C € proposed : v = vval[a] *xC Sent in classic 2a.
rnd’ = [rnd ExcepT ![a] = i]
vrnd’ = [vrnd EXCEPT ![a] = 7]
voal’” = [vval ExcepT ![a] = v]
Send([type — “phase2b”, rnd — i, val — v, acc — a])
UNCHANGED (cVars, oVars)

> > > > >

Action CollisionDetection(i, a) specifies the action acceptor a must take when it detects a collision
on the values proposed by a coordinator quorum or on the values accepted by an acceptor quorum
for round . In such a case, acceptor a sends a phaselb message for round 7 + 1.
CollisionDetection(i, a) =
Arnd[a] =1
A V3IQ € CoordQuorum(i) : collision in a multicoordinated round
Am1, m2 € MsgsFromCoordQuorum(Q, i, “phase2a”) :
A m1.coord # m2.coord
A = AreCompatible(m1.val, m2.val)
v3Q e Quorum(i): collision in a fast round
Am1, m2 € MsgsFrom(Q, i, “phase2b”) :
A ml.acc # m2.acc
A =~ AreCompatible(m1.val, m2.val)
Arnd’ =[rnd ExcepT ![a] = 4]
A Send([type — “phaselb”, rnd — NextRound(i), vrnd — vrnd[a],
vval — vval[a], acc — al)
A UNCHANGED (¢ Vars, oVars, vrnd, vval)

Action UncoordinatedRecovery(i, a, v) specifies our variation of uncoordinated recovery. With this
action, acceptor a attempts to recover from a collision in round 7 by sending a phase 2b message for
round NextRound(i) with value v.
UncoordinatedRecovery(i, a, v) =
LET j = NextRound(i)
IN Aj € FastNum
Arndla] =1
AT Q € Quorum(y):
AV b€ Q:3d3m € NextRoundP1b(Q, 1) : m.acc=1b
A IsPickableVal(Q, 7, NextRoundP1b(Q, 1), v)
Arnd’ = [rnd Except ![a] =]
A vrnd’ = [vrnd EXCEPT ![a] = j]
Awvval’ = [vval EXCEPT ![a] = v]
A Send([type — “phase2b”, rnd — j, val — v, acc — a])
A UNCHANGED (cVars, oVars)

A.2 TLA" Specifications

181

accLastMsg(a) is defined to be the last message sent by acceptor a, if rnd[a] > (0, 0)

accLastMsg(a) =
1IF vrnd[a] < rnd[a]
THEN [type — “phaselb”, rnd — rnd[a], vrnd — vrnd[a],
vval — wvval[a], acc — a]
ELSE [type — “phase2b”, rnd — rnd[a], val — vval[a],
acc — a]

In action AcceptorRetransmit(a) acceptor a retransmits the last message it sent.

AcceptorRetransmit(a) =
Arnd[a] € RNum
A Send(accLastMsg(a))
A UNCHANGED (aVars, c¢Vars, amLeader, proposed,
learned, goodSet)

AcceptorNext(a) is the next-state action of acceptor a— that is, the disjunct of the next-state action

that represents actions of that acceptor.
AcceptorNeat(a) =
v 3ie€ RNum : V Phaselb(i, a)
v v € CStruct : V Phase2b(i, a, v)
V UncoordinatedRecovery(i, a, v)
V CollisionDetection(i, a)
V AcceptorRetransmit(a)

Other Actions

Action Propose(v) represents the proposal of a value v by some proposer.
Propose(v) =
A proposed’ = proposed U {v}
A UNCHANGED (aVars, cVars, amLeader, sentMsg,
learned, goodSet)

Action Learn(l, v) represents the learning of a value v by learner /.
Learn(l, v) =
Adie RNum:
3Q € Quorum(i):
YVae@:
dm € sentMsg : A m.type =“phase2b”
Am.rnd =1
Am.acc = a
A v E m.val
A learned’ = [learned ExcepT ![l] = @ U {v}]
A UNCHANGED (aVars, cVars, amLeader, sentMsg, proposed, goodSet)

182 Multicoordinated Paxos

Action LeaderSelection allows an arbitrary change to the values of amLeader[c], for all coordinators
c. Since this action may be performed at any time, the specifiction makes no assumption about the
outcome of leader selection. (However, progress is guaranteed only under an assumption about the
values of amLeader[c].)
LeaderSelection =

A amLeader’ € [Coord — BOOLEAN]

A UNCHANGED (aVars, c¢Vars, sentMsg, proposed,

learned, goodSet)

Action Fuail(a) specifies the failure of agent a.
Fail(a) =
A a € goodSet
A goodSet’ = goodSet \ {a}
A UNCHANGED (aVars, c¢Vars, amLeader, sentMsg,
proposed, learned)

Repair(a) specifies the recovery of agent a. For simplicity, we model the loss of state in crnd[a],
cval[a], or rnd[a] during recovery.
Repair(a) =
A a ¢ goodSet
A goodSet’ = goodSet U {a}
ATF a € Coord
THEN A crnd’ = [ernd ExcepT ![a][1]= @+ 1, ![a][2] = 0]
A cval’ = [cval EXCEPT ! [a] = none]
ELSE UNCHANGED cVars
ATF a € Acceptor
THEN A rnd’ = [rnd ExceeT ![a][1] =@+ 1, ![a][2] = 1]
ELSE UNCHANGED rnd
A UNCHANGED (vrnd, vval, amLeader, sentMsg, proposed, learned)

Action FailOrRepair allows the failure or recovery of an agent a. Since this action may be performed
at any time, the specification makes no assumption about which agents are good. (However, progress
is guaranteed only under an assumption about the value of goodSet.)
FailOrRepair = 3a € (Coord U Acceptor) :

V Fail(a)

V Repair(a)

Action LoseMsg(m) removes message m from sentMsg. It is always enabled unless m is the last
message sent by an acceptor or coordinator in goodSet. Hence, the only assumption the specification
makes about message loss is that the last message sent by an agent in goodSet is not lost. Because
sentMsg includes messages in an agent’s output buffer, this effectively means that a non-failed pro-
cess always has the last message it sent in its output buffer, ready to be retransmitted.
LoseMsg(m) =
AV A m.type = “phasela”
A dc € unioN CoordQuorum(m.rnd) :
A m = coordLastMsg(c)
A c € goodSet
V A m.type = “phase2a”
A m = coordLastMsg(m.coord)

A.2 TLA" Specifications 183

A m.coord € goodSet
V A m.type € {“phaselb”, “phase2b”}
A m = accLastMsg(m.acc)
A m.acc € goodSet
A sentMsg’ = sentMsg \ {m}
A UNCHANGED (aVars, ¢Vars, amLeader, proposed,
learned, goodSet)

Action OtherAction is the disjunction of all actions other than ones peformed by acceptors or co-
ordinators, plus the LeaderSelection action (which represents leader-selection actions performed by
the coordinators).
OtherAction =

v3v e Cmd : Propose(v)

v 3w € CStruct, | € Learner : Learn(l, v)

V LeaderSelection

V FailOrRepair

VvV 3m € sentMsg : LoseMsg(m)

Next is the algorithm’s complete next-state action.

Neat =
V d¢ € Coord : CoordNext(c)
V da € Acceptor : AcceptorNext(a)
V OtherAction

Formula Spec is the complete specification of the Multi-coordinated Paxos algorithm without fairness.
Spec = Init A O[Next]

vars

The following are the safety properties of Generalized Consensus.

Nontriviality = V1 € Learner :
O(learned[l] € Str(proposed))

Stability = VY1 € Learner, v € CStruct :
O((learned[l] =v) = O(v C learned[(]))

Consistency = Y11, 12 € Learner :
OAreCompatible(learned[11], learned[12])

The following theorem asserts the correctness of the algorithm.

THEOREM Spec = O(Type OK) A Nontriviality
A Stability
A Consistency

184 Multicoordinated Paxos

Appendix B

Log Service

The specifications presented in Sections 5.3 and 5.5, are simplified versions of our
complete specifications. For the unabridged versions, we used Lamport’s Temporal
Logic of Actions (TLA™) specification language []. The language
borrows most of its formalism from basic mathematics, and reading it should be
straightforward except maybe for a few constructs. The TLA" cheat-sheet should be
enough to clarify any other doubts[1.

B.1 Abstract Specification

B.1.1 Constants

This module specifies constants used by all the other specifications.

MODULE LogService Constants
This module specifies the LogService’s constants.

The service’s constant parameters:

RM the set of resource managers.
TID the set of transaction ids.
Update the type update.

ApplyUpdate interface to database.
GetUpdate update at r, by t.
CONSTANTS RM, TID, Update,
ApplyUpdate(-),
GetUpdate(_,)

NoRM = CHOOSE r:1 & RM
NoTID

CHOOSE t : t ¢ TID

The environments’s constant parameters:
PID the set of all processes.

185

186 Log Service

CONSTANTS PID

NoPID = cHOOSE p : p ¢ PID

B.1.2 Specification

MODULE LogService

This module specifies the LogService. That is, it specifies a centralized log service would look like,
and how resource managers should use it.

EXTENDS Naturals, FiniteSets, Sequences,
LogServiceConstants

The environment’s variables:
badProc crashed processes
suspect suspicions.

VARIABLES badProc, Environments’s
suspect Who suspects whom?

The Service’s variables:
vHist the history of votes.
tHist the history of committed transactions
LastConcSet LastConcSet concurrent to the last committed.
terminatingAt transactions terminating at rm.
terminatedAt transactions terminated at rm.

VARIABLES vHist, tHist, rm2pid, Log service’s
LastConcSet

The Resource Managers’ variables:
terminatingAt transactions terminating at rm.
terminatedAt transactions terminated at rm.

VARIABLES terminatingAt, Resource Manager’s
terminatedAt,
pid2rm

The Transaction Managers’s variables:
termReq transactions requested to terminate.

part participants on each transaction.
VARIABLES termReq, Transaction Managers’
part

Defining some aliases.

svars = (vHist, tHist, LastConcSet, rm2pid)
rvars = (terminatingAt, terminatedAt, pid2rm)
tvars = (part, termReq)

B.1 Abstract Specification 187

(badProc, suspect)
(svars, rvars, tvars, evars)

evars
avars

1> 1>

Types

UNKNOWN = CHOOSE v : v ¢ {TRUE, FALSE}

Votes = [rm: RM, tr : TID, tset : SUBSET RM,
vt : {“Commit”, “Abort”}, upd : Update]

Invariants
Type invariant.
Typelnvariant =
N vHist € suBseT Votes
A tHist € Seq(suBset TID)
A LastConcSet € suBseT TID
A rm2pid € [RM — PID U{NoPID}]

A terminatingAt € [PID — suBseT TID]
A terminatedAt € [PID — suBseT TID]

A pid2rm € [PID - RM U{NoRM}]

A part € [TID — unNioN {[S — PID] : S € suBseT RM}]
A termReq € suBSeT TID

A badProc € suBSET PID

A suspect € [PID — [PID — BOOLEAN]]

Initial State

Init = No vote received. No transaction
A vHist ={} committed,
A tHist =) No RM is incarnated. No trans-
A LasthncSet =1 actions terminating at any RM.
A rm2pid =[r € RM — NoPID]

No transactions terminating at

A terminatingAt = [p € PID — {}] any RM. No RM is incarnated.

A terminatedAt = [p € PID — {}]

A pid2rm =[r € PID — NoRM]
A part =[t € TID — [e € {} » {}]] No participant in any transaction.
No termination request issued. No
A termReq ={} bad process.
A badProc ={}
A suspect = [p € PID — [q € PID — FaLSE]]
Operators

Operator IsInvolved(t, rm) checks whether rm is involved in transaction ¢.

IsInvolved(t, rm) = ¥ v € vHist : v.tr =t Arm € v.rm
THEN TRUE

188 Log Service

ELSE IF dv € vHist : v.tr = t A v.vt = “Commit”
THEN FALSE
ELSE UNKNOWN

Operator Updates(rm) gets the updates performed by rm in committed transactions.
Updates(rm) =

LET UpdateOn(t) = (CHOOSE v € vHist : v.tr =t A v.rm = rm).upd

upd[i €0 .. Len(tHist)] =
IFi=0
THEN ()
ELSE Append(upd[i— 1], { UpdateOn(t) :
t € {e € tHist[1] :
IsInvolved(rm, e) = TRUE}})

IN upd[Len(tHist)]

Operator Outcome(h, t) gives the termination status of transaction ¢, considering the history of votes
h.

Outcome(h, t) = 17 v € h: v.tr =t A v.vt =“Abort”
THEN “Abort”
ELSE IFdv € h:
Av.itr=t
AV p € v.tset:
doweh: Avworm=p
Avv.dr =t

Avv.ot =“Commit”
THEN “Commit”

ELSE “Undefined”

Actions

Environment

This action crashes a good process.

Crash = A3p € (PID\ badProc) : badProc’ = badProc U {p}
A UNCHANGED (suspect)

This action changes the suspicion status.
ChangeSuspicion = Adp € (PID\ badProc), ¢ € PID :
Ap#q
A suspect’ = [suspect ExcepT ! [p][q] = @]
A UNCHANGED (badProc)

EnvActions:
e process crash.

B.1 Abstract Specification 189

e change suspicions.

EnvActions = A V Crash
V ChangeSuspicion
A UNCHANGED (svars, rvars, tvars)

Transaction Manager

Adds a resource manager to a non-terminated transaction.

The transaction manager will only succeed in the adding a resource manager r to a transaction ¢ if

r was not crashed by the time it was contacted, and replied to o=~=~*i~= =~meemae
t has not tried to
AddRM = A3t e (TID\ termReq), terminate yet. r
re{re RM: Arm2pid[r] # NoPID has been incarnated,
A rm2pid[r] ¢ badProc} : replied to an opera-
A 1 & DOMAIN part[t] tion, and was not a

A part’ = [part Except ! [t] = participant yet
[e € DOMAIN @ U {r} — IF ¢ € DOMAIN @
THEN @[€]

ELSE rm2pid[r]]]
A UNCHANGED (termReq, rm2pid)

Request the termination of a transaction.

The transaction manager can, at any time, try to terminate a transaction it has not tried to terminate
before, and that executed some operation.

RequestTerm = A3t € (TID\ termReq) : t has not tried to terminate yet.
A part[t] # ()
A termReq’ = termReq U {t}
A UNCHANGED (part, rm2pid)

The disjunction of Transaction Manager’s actions.
e Add a resource manager as a participant.
e Try to terminate a transaction.
TMActions = A V AddRM
V RequestTerm
A UNCHANGED (svars, rvars, evars)

Log Service

Action Incarnate(pid, rm) is executed by process pid to incarnate resource manager 7m.
Incarnate =
LET ApplyUpdates(u) =
LET apply[i € 1.. Len(uw)] =
1F i = Len(u) THEN ApplyUpdate(u[i])
ELSE ApplyUpdate(uli]) A apply[i+ 1]

IN IF u = () THEN TRUE
ELSE apply[1]

190 Log Service

IN dp € PID\ badProc, r € RM :
A pid2rm[p] = NoRM
AV rm2pid[r] = NoPID
V rm2pid[r] # NoPID A suspect[p][rm2pid[r]]
A rm2pid’ = [rm2pid ExcepT ![r] = p]
A pid2rm’ = [pid2rm excepT ![p] = r]
A ApplyUpdates(Updates(r))
A UNCHANGED (terminatingAt, terminatedAt, vHist, tHist, LastConcSet)

Action Vote(v) adds v to vHist, if not there yet.

Vote(v) = Voted transactions not
LET ConcSet(vh) = {t € {v.tr: Av € vh}: terminated yet.
Outcome(vh, t) = “Undefined”}
Commits = A Outcome(vHist’, v.tr) = “Commit”
AV Awv.tr € LastConcSet
A tHist' = [tHist EXCepT ![Len(tHist)] = @ U {v.tr}]
A LastConcSet’ = LastConcSet \ {v.tr}
V Awv.tr ¢ LastConcSet
A tHist' = Append(tHist, {v.tr})
A LastConcSet’ = ConcSet(vHist') \ {v.tr}
A UNCHANGED rm2pid

Aborts = A Outcome(vHist', v.tr) =“Abort”
A UNCHANGED (tHist, LastConcSet, rm2pid)

IN A-dov € vHist: A ov.rm = v.rm
Aov.tr =wv.tr Add v to vHist
A vHist' = vHist U {v}
A StayUndef v Commits V Aborts

Action Terminate(rm, t) is executed by rm to step towards transaction ¢’s termination.
VoteForMyself(r, t) =
At € (termReq
\ (terminatingAt[rm2pid[r]] U terminatedAt[rm2pid[r]]))
A terminatingAt’ = [terminatingAt ExceptT ! [rm2pid[r]] = @ U {t}]

AV Vote([rm — r, tr — t, tset — DOMAIN part[t], Vote
vt — “Commit”, upd — GetUpdate(r, t)]) commit.
Vv Vote([rm — r, tr — t, tset — {r}, vt — “Abort”, upd — {}]) Vote
A UNCHANGED (terminatedAt) abort.

VoteForOthers(r, t) = rm tried to termi-
At € terminatingAt[rm2pid[r]] nate ¢ ¢ is stuck.
A Outcome(vHist, t) = “Undefined”
A 3Js € DOMAIN part[t] :
A suspect[rm2pid[r]][rm2pid[s]]
A Vote([rm — s, tr — t, tset — DOMAIN part[t],

B.1 Abstract Specification 191

vt — “Abort”, upd — {}])
A UNCHANGED (terminatingAt, terminatedAt)

Learn(r, t) =
A Outcome(vHist, t) # “Undefined” Since ¢ has terminated, rm learns it.
A terminatingAt’ = [terminatingAt except | [rm2pid[r]] = @\ {t}]
A terminatedAt’ = [terminatedAt EXCEPT ![rm2pid[r]] = @ U {t}]
A UNCHANGED (svars)

Terminate =
dre RM,te TID : r is a participant of ¢. the process is
A T € DOMAIN part[t] alive, and is still the same
A part[t][r] & badProc
A part[t][r] = rm2pid[r]
AV VoteForMyself (r, t)
V VoteForOthers(r, t)
V Learn(r, t)
A UNCHANGED (pid2rm,)

RMActions =
A V Incarnate
Vv Terminate
A UNCHANGED (tvars, evars)

Specification
Nexzt = V RMActions

VvV TMActions
V EnvActions

Spec Init AO [Neq;t] (svars, tvars, rvars, evars)

Theorems

The specification is type safe.

THEOREM Spec = O Typelnvariant

AC-Validity If an RM decides to commit a transaction, then all RMs voted to commit the transaction.

AC_Validity = Yt € TID : Outcome(vHist, t) =“Commit”
= VY r € DOMAIN part[t]:
dv e vHist: Avorm=r
ANv.tr =t
A v.vote = “Commit”

AC-Agreement It is impossible for one RM to commit a transaction and another one to abort the
transaction.

AC_Agreement = TRUE From the definition of Qutcome.

192 Log Service

AC-Non-Triviality If all RMs vote to commit the transaction and no RM is suspected throughout the
execution of the protocol, then the decision is commit.
AC_Non_Triviality = ¥t e TID :
AV r, s € part[t] : O(—suspect[rm2pid[r]][rm2pid2[s]])
AV r € part[t] : Jv € vHist : Avorm =1
ANv.t=1
A v.vt =“Commit”
=
<& Outcome(vHist) = “Commit”

AC-Termination Non-faulty RMs eventually decide.

AC_ Termination =
AVt € TID : O(Outcome(vHist, t) € {“Commit”, “Abort”})
AYte TID : Y r € part[t] : OO(t € terminatedAt[r])

THEOREM Spec = A AC_Validity A AC_Non_Triviality AN AC_ Termination

B.1.3 Correctness

We want to prove that the log service’s specification (LSS) we gave at Section 5.3
satisfies the atomic commitment and the R-Consistency properties, recalled below.
We first prove an invariant of the algorithm and then proceed to prove each property
individually.

* AC-Validity If an RM decides to commit a transaction, then all RMs voted to
commit the transaction.

* AC-Agreement It is impossible for one RM to commit a transaction and an-
other one to abort the transaction.

* AC-Non-Triviality If all RMs vote to commit the transaction and no RM is sus-
pected throughout the execution of the protocol, then the decision is commit.

* AC-Termination Non-faulty RMs eventually decide.

* Durability Committed data is saved by the system such that, even in the event
of a failure and system restart, the data is available in its correct state.

Invariant 1 At any point in time there is at most one process incarnating any given
resource manager.

ProoF: At the initial state, defined by Init, no resource manager is incarnated by
any process. Resource managers are incarnated only by executing action Incarnate,
that replaces the previous resource manager by the new one. Therefore, at most

B.1 Abstract Specification 193

one process can be incarnating a resource manager at any point in time, and this
relation is kept in rm2pid. [

Invariant 2 Given a transaction t, if Outcome(vHist,t) #“Undefined” at some point
in time, then it will equal Outcome(vHist,t) at any later time.

Proor: The variable vHist is only changed in action Vote, where a vote v is added
to vHist only if there was no other vote for the same transaction v.tr and resource
manager v.rm invHist. Therefore, the only change allowed to vHist is the addition
of new votes.

At the initial state vHist = {} and, by the definition of action Qutcome, Outcome({}, t)
equals “Undefined”. From this state, “Abort” and “Commit” votes for ¢ can be added
to vHist.

By the definition of Outcome, if an ‘Abort” is ever added, then Outcome(vHist,t)
will equal “Abort” at any future evaluation. If a “Commit” vote is added for each
resource manager involved in ¢, then Outcome(vHist,t) will equal “Commit” and,
because no “Abort” vote for ¢ could be added later, it will equal “Commit” at any
future evaluation. [

Proposition 13 (AC-Valitidy) LSS satisfies the AC-Validity property.

Proor: By the specification, the only action that issues “Commit” votes is action
VoteForMuyself . As its name suggests, the action is executed for a resource manager
r only to cast its own vote and, therefore, a vote v such that v.vt =“Commit” and
v.rm = r can only be casted by r itself.

By specification, Qutcome(vHist,t) will equal “Commit” only if a “Commit” vote
has been issued for ¢ from all resource managers involved. By the previous para-
graph, we know that each resource manager involved in ¢ must have issued its own
“Commit” vote for ¢, and the AC-Validity property is true. [

Proposition 14 (AC-Agreement) LSS satisfies the AC-Validity property.

PrOOF: Suppose that Outcome(vHist,t) evaluated to “Commit” at some point in
time for some transaction ¢. By the initial state it was initially evaluated to “Un-
defined” and turned to “Commit” at some later state. By the Invariant A.2, it
must have turned directly from “Undefined” to “Commit”, and will be “Commit”
on any future evalution. Therefore, any resource manager either sees “Commit”
or “Undefined”; because a resource manager will give ¢ for terminated only if
Outcome(vHist, t) #“Undefined”, all resource managers will see the same termi-
nation outcome. Changing “Commit” for “Abort” renders the equivalent result, and
therefore the AC-Agreement property is true. [

194 Log Service

Proposition 15 (AC-Non-Triviality) LSS satisfies the AC-Non-Triviality property.

Proor: By the specification, for any transaction ¢, a resource manager will only vote
“Abort” abort on behalf of another resource manager if it suspects that it is crashed.
If there are no suspicions, then all resource manager will vote for themselves. If no
resource manager votes “Abort” for itself, then only “Commit” votes will be issued
and added to vHist. Because, by assumption, all crashes are eventually suspected,
the lack of suspicions implies that no resource manager crashed. Therefore, even-
tually all resource managers involved in ¢ will have their votes added to vHist and,
at this point in time, Qutcome(vHist,t) will turn from “Undefined” to “Commit”,
satisfying the AC-Non-Triviality property. [|

To prove the next property we must assume some kind of fairness on the system;
we assume the following: actions that become enabled and remain in such state
until executed, are eventually executed. This property is equivalent to the Weak
Fairness described in [].

Proposition 16 (AC-Termination) LSS satisfies the AC-Termination property.

Assuming that any transaction ¢ that is started will eventually be requested to termi-
nate, resource managers will eventually crash or vote for themselves. As, by assump-
tion, non-faulty resource managers eventually suspect any crashed ones and vote on
their behalf if they have issued their own votes, eventually some “Abort” vote or all
“Commit” votes for ¢ will be gathered by the log service, ¢ will be terminated, and
resource managers that did not crash will learn the transaction’s outcome, hence,
satisfying the AC-Termination property. ||

Proposition 17 (Durability) LSS satisfies the Durability property.

Let s be the state of some given database. We denote by s.u the state obtained
by applying an update u to the database at state s. To prove the the Durability
property we use the following assumptions regarding this change of states. We
call two transactions “non-concurrent” if their termination procedure was executed
within non-overlapping periods of time.

Assumption 6 Applying an update is a deterministic operation. That is, given two
databases at states s; and s, and and update u, ($; = $5) = (81.u = sy.u).

Assumption 7 Updates to different data items are commutable. That is, given two
updates u, and u, and a database in some state s, if u, and u, do not write to the same
data item, then s.u;.uy = S.Usy.U;.

B.1 Abstract Specification 195

Assumption 8 Concurrent transactions do not access the same data items. Le., if two
transactions execute their commit procedure in parallel, then they do not read items
written by each other.

Proor skeTcH: We divide the proof in several steps. First we show that any non-concurrent trans-
actions that committed, who possibly accessed the same data items, are totally ordered in tHist,
according to their termination order. Then we show that the reincarnation procedure apply the up-
dates of committed transactions in the same order they were committed (the order in ¢Hist) and,
finally, show that this ensures that a recovered resource manager has the same committed stated as
before crashing or being replaced.

1. AssumE: (C, <) is the poset where C' is the set of committed transactions of
some run of the system, <. their commit order, and
vHist = (H, <), in that run.
PROVE: Vi, € C:t <ot =4 <y b
Proor: Let t; and ¢, be two non-concurrent transactions that committed and,
without loss of generality, let ¢; be the one that committed first. By the specifica-
tion, all resource managers involved in ¢, executed the action Vote with “Commit”
vote for ¢, before any has voted for ¢,.
By the definition of Vote, when the first vote for ¢, was issued, ¢; was added to
ConcSet. After the last vote, ¢; was removed from ConcSet and added to vHist,
and LastConcSet was changed to a set not containing #,. When ¢, receives its
first vote to commit, it is added to ConcSet, and upon the last vote, it is removed
from ConcSet and added to vHist. Because t, cannot belong to the LastConcSet
defined when ¢, was committed, ¢, will belong to a set in tHist different from the
one t; belongs, by the specification.
Recalling the meaning of the data-structure tHist, if a transaction ¢; belongs to
the set tHist[i] for some natural number i, then , <j t,, for any transaction ¢,
that belongs to tHist[j] for any j > i.
2. ASSUME: r is a resource managet,
t is a transaction that committed, and
r was involved in ¢.
Provi: If Updates(r) is evaluated after ¢ committed, then
di € 1..Len(Updates(r)) : Updates(r)[i] = u,
where u are the updates executed by r on transaction t.
ProoF: Because ¢ committed, by the definition of Vote, there must be a set in
tHist to whom t belongs. By de definition of Updates and IsInvolved, r will
be identified as participant of ¢ and, by the definition of UpdateOn, inside the
definition of Updates, r’s updates on ¢ are in Updates(r).
3. ASSUME: r is a resource managet,
t; and t, are non-concurrent transactions,
t; and t, committed,
t, committed before ¢,,

196 Log Service

r was involved in ¢; and ¢,,

r’s updates on ¢, and t, are u;, and u,, respectively.
Prove: (Updates(r)[i] = uy) A (Updates(r)[j] =u,) => i <j
Proor: The definition of Updates constructs Updates(r) accessing tHist back-
wards, but orderly. Because each update is added to tHist before the previous
one in the sequence, the final result is that updates are in the same order as their
respective transaction. By the step 2, both u; and u, are in Updates(r) and, by
step 1, t, is ordered before ¢, in tHist, and u, appear before u, in Updates(r).

4. Q.E.D.

Proor: By the definition of ApplyUpdates, updates are applied sequentially. Con-
sequently, by steps 1,2, and 3, all updates of non-concurrent transactions are ap-
plied in the recovering resource manager in the same order they were originally
executed. By Assumption 8, concurrent transactions access only different items
and are, by Assumption 7, commutable. Finally, by Assumption 8, the recover-
ing resource manager must have the same committed state as in the previous
incarnation.

B.2 Coordinated Implementation

197

B.2 Coordinated Implementation

B.2.1 Specification

MODULE CoordLogSeruvice

This module is specifies the log service’s Coordinated Implementation.

EXTENDS Naturals, FiniteSets, Sequences,
LogServiceConstants,
Consensus

CONSTANTS Coord

The environment’s variables:
badProc processes that crashed
suspect process X process suspicions.

msgs messages sent.
VARIABLES badProc,
suspect,
msgs

The Coordinators’s variables:
VHistAt votes received per coordinator.
tHistAt transactions that committed.
recSet set of awaiting recovery transactions.
bSet sets of votes to be proposed.
instances instance to be used by the coordinator(s).

VARIABLES vHist,
tHist,
recSet,
bSet,
mstances

The Resource Managers’ variables:
terminatingAt transactions terminating at rm.
terminatedAt transactions terminated at rm.

pid2rm PID — RM.
incarns the incarnation of each rm.
outcome local view of Outcome.
VARIABLES terminatingAt,

terminatedAt,

pid2rm,

mecarns,

outcome

The Transaction Managers’s variables:
termReq transactions requested to terminate.

part participants on each transaction, and incarnating process.

198 Log Service

VARIABLES termReq,
part

Defining some aliases.

svars = (vHist, tHist, recSet, bSet, instances)

rvars = (terminatingAt, terminatedAt, pid2rm, incarns, outcome)
tvars = (part, termReq)

evars = (badProc, suspect)

ovars = (decision)

avars = (svars, rvars, tvars, evars, ovars, msgs)

Types

Incarnating = cHOOSE p : p ¢ (PID U{NoRM})

Vote extended with PID
EVotes = [rm: RM, tr: TID, tset : sUBSET RM,
vt {“Commit”, “Abort”}, upd : Update, pid : PID]

Votes to incarnate a resource manager.
IncarnT = [vt : {“Incarnate”}, pid : PID, rm : RM]

Types of messages exchanged.

Msgs = [type : {“Recover}, rm : RM, pid : PID]U
[type : {“Recovered”}, rm : RM, pid : PID,
upd : Seq(Update), inc : Nat] U
[type : {“Incarnated”}, rm : RM, inc : Nat] U
[type : {“Vote }, rm : RM, pid: PID, tr: TID,
tset : sUBSET RM, vt : {*Commit”, “Abort”}, upd : Update] U
[type : {“Terminated”}, tr : TID, out : {*Commit”, “Abort”}]

Invariants

Type invariant.

Typelnvariant =
A vHist € suBseT EVotes
A tHist € Seq(TID U IncarnT)
A bSet € [Coord — suBseT (EVotes U IncarnT)]
ArecSet € SUBSET IncarnT
A instances € Nat
A terminatingAt € [PID — suBseT TID]
A terminatedAt € [PID — suBseT TID]
A pid2rm € [PID — RM U {Incarnating, NoRM}]
A outcome € [PID — [TID — {*Undefined”, “Abort”, “Commit”’}]]
A part € [TID — unioN {[S — PID] : S € suBseT RM}]
AtermReq € suBseT TID
A badProc € suBseT PID

B.2 Coordinated Implementation

199

A suspect € [PID — [PID — BOOLEAN]]
A msgs € SUBSET Msgs
A ConsensusTypelnv

Init

Initial State

A

A vHist ={}
A tHist =)
A bSet = [c € Coord — {}]
A recSet = [c € Coord — {}]
A instances =0

A terminatingAt = [p € PID — {}]
A terminatedAt = [p € PID — {}]

No vote received,
no transaction com-
mitted, nor being
committed.

No transactions termi-
nating. No transac-
tions terminating. No
RM is incarnated.

No transaction started.
No termination request
issued. No bad process.

No message sent

A pid2rm =[r € PID — NoRM]
A outcome =[p € PID — [t € TID — “Undefined”]]
A incarns =[p € PID — 0]
A part =[t € TID — [e € {} — {}]]
A termReq =1{}
A badProc ={}
A suspect = [p € PID — [q € PID —> FALSE]]
A msgs =1{}
A ConsensusInit
Operators

The pid of the process currently incarnating 7.
rm2pid(r) =

iFdp e PID,ie€1.. Len(tHist) :

A tHist[i1] = [vt — “Incarnate”, pid — p, rm — 7]

A—-3je€i+1.. Len(tHist), op € PID :

tHist[j] = [vt — “Incarnate”, pid — op, rm — 7]

THEN CHOOSE p € PID :
diel.. Len(tHist):

A tHist[i] = [vt — “Incarnate”, pid — p, rm — 7]

A—-3j€i+1.. Len(tHist), op € PID :

tHist[j] = [vt — “Incarnate”, pid — op, rm — 7]

ELSE NoPID

Operator OQutcome(h, t) gives the termination status of transaction ¢, considering the history of votes

h

Outcome(h, t) =

IFdv € h:v.tr=tAv.vt =“Abort”
THEN “Abort”
ELSE IFdv € h:

Av.tr=t

AV p € v.tset:

200 Log Service

Jdweh: ANvworm=0p

Avv.tr =t
Avv.ot =“Commit”
THEN “Commit”
ELSE “Undefined”
Actions
Environment

This action crashes a good process.

Crash =
A3 p € (PID\ badProc) : badProc’ = badProcU {p}
A UNCHANGED (suspect)

This action changes the suspicion status.

ChangeSuspicion =
Adp € (PID\ badProc), g € PID :

Ap#q
A suspect’ = [suspect ExceprT ! [p][q] = ~@]
A UNCHANGED (badProc)

EnvActions:
e process crash.
e change suspicions.

. A ..
EnvActions = A Crash V ChangeSuspicion
A UNCHANGED (msgs, svars, tvars, rvars, ovars)
Transaction Manager
Adds a resource manager to a non-terminated transaction.
The transaction manager will only succeed in the adding a resource manager r to a transaction ¢ if

r was not crashed by the time it was contacted, and replied to operation request.

AddRM = t has not tried to terminate yet.
A3dt e (TID\ termReq), r has been incarnated, replied
re{re RM: Arm2pid(r) # NoPID to an operation, and was not a

A rm2pid(r) ¢ badProc} : participant yet.
A 1 & DOMAIN part[t]
A part’ = [part EXcepT ! [t] =
[e € DOMAIN @ U {r} — IF ¢ € DOMAIN @
THEN @[]
ELSE rm2pid(r)]]
A UNCHANGED (termReq)

Request the termination of a transaction.

B.2 Coordinated Implementation 201

The transaction manager can, at any time, try to terminate a transaction it has not tried to terminate
before, and that executed some operation.

RequestTerm = A3t € (TID\ termReq) : t has not tried to terminate yet.
A part[t] # ()
A termReq’ = termReq U {t}
A UNCHANGED (part)

The disjunction of Transaction Manager’s actions.
o Add a resource manager as a participant.
e Try to terminate a transaction.
TMActions = AV AddRM
V RequestTerm
A UNCHANGED (rvars, evars, svars, msgs, ovars)

Log Service
Starts the incarnate procedure.
IncarnateStart(p, r) = p is neither incarnating
A pid2rm[p] = NoRM nor trying and 7 is not in-
AV rm2pid(r) = NoPID carnated or its process is

V rm2pid(r) # NoPID A suspect[p][rm2pid(r)] supected.
A pid2rm’ = [pid2rm ExcepT ![p] = Incarnating]
A msgs’ = msgs U {[type — “Recover”, pid — p, rm — r]}
A UNCHANGED (incarns)

Ends the incarnate procedure.

IncarnateEnd(p, r) =
LET ApplyUpdates(u) =
LET apply[i € 1.. Len(w)] =
1F i = Len(u) THEN ApplyUpdate(u[i])
ELSE ApplyUpdate(u[i]) A apply[i+ 1]

IN IF u = () THEN TRUE
ELSE apply[1]

IN Apid2rm[p] = Incarnating

Adm € msgs :
A m.type = “Recovered”
Am.pid =p
Am.rm=r
A pid2rm’ = [pid2rm except ! [p] = r]
Aincarns’ = [incarns EXCEPT ! [p] = m.inc]
A ApplyUpdates(m.upd)

A UNCHANGED (msgs)

Executed by process p to give up incarnating r, when another process incarnates it.

202 Log Service

Desincarnate(p, r) =

A incarns[p] > 0

Adm € msgs :
A m.type = “Incarnated”
Am.rm=r
A m.inc > incarns[p]

A incarns’ = [incarns ExcepT ![p] = 0]

A UNCHANGED (msgs, pid2rm)

IncarnateStub is a “stub” to the abstract log service Incarnate action.
IncarnateStub =
Adp € PID\ badProc, r € RM : p is good
V IncarnateStart(p, r)
V IncarnateEnd(p, r)
V Desincarnate(p,)
A UNCHANGED (terminatingAt, terminatedAt, outcome)

VoteForMyself is executed to vote on some transaction.
VoteForMyself(r, t) =
rm has not tried to terminate .
At € (termReq \ (terminatingAt[part[t][r]] U terminated At[part[t][r]]))
A terminatingAt’ = [terminatingAt except ! [part[t][r]] = @ U {t}]
AV msgs’ = msgs U {[type — “Vote”, pid — part[t][r], rm — r,
tr — t, tset — DOMAIN part[t], Vote
vt — “Commit”, upd — GetUpdate(r, t)]} com-
V msgs’ = msgs U {[type — “Vote”, pid +~— part[t][r], rm+—r, mit
tr — t, tset — {r}, vt — “Abort”, upd — {}]}
A UNCHANGED (terminatedAt, outcome)

Vote
AL 1
VoteForOthers is executed to vote for some slow participant.
VoteForOthers(r, t) = rm tried to terminate ¢ but did

At € terminatingAt[part[t][r]] not succeed yet.
A outcome[part[t][r]][t] = “Undefined”
A—Im € msgs :
A m.type = “Terminated”
Am.tr=t
A s € DOMAIN part[t] :
A suspect[part[t][r]][part[t][s]]
A msgs’ = msgs U
{[type — “Vote”, pid — part[t][s], rm — s, tr — t, Send an
tset — DOMAIN part[t], vt — “Abort”, upd — {}]} abort vote.
A UNCHANGED (terminatingAt, terminatedAt, outcome)

Learn action is performed when a new transaction has terminated.

Learn(r, t) = outcome[t] is undefined but ¢
A outcome[part[t][r]][t] = “Undefined” terminated.
Adm € msgs :

B.2 Coordinated Implementation

203

A m.type = “Terminated”

Am.tr=t

A outcome’ = [outcome EXCEPT ! [part[t][r]][t] = m.out]
A terminatingAt’ = [terminatingAt except ! [part[t][r]] = @)\ {t}]
A terminatedAt’ = [terminatedAt EXCEPT ![part[t][r]] = @ U {t}]
A UNCHANGED (msgs)

Action TerminateStub is executed by rm to step towards transaction #’s termination.

It is a “stub” to the abstract log service’s Terminate action.

TerminateStub =

ANdr e RM,te TID: r is a participant of ¢. the process is
AT € DOMAIN part[t] still alive, and sees itself as the rm.
A part[t][r] ¢ badProc first attempt to ter.minate t.' other at-
A pid2rm[part[t][r]] = r tempts Learn that it was decided.

A V VoteForMuyself(r, t)
V VoteForOthers(r, t)
V Learn(r, t)
A UNCHANGED (incarns, pid2rm,)

The disjunction of Resource Manager’s actions.
e Execute the incarnation procedure.
e Try to terminate a transaction.
RMActions =
AV IncarnateStub
V TerminateStub
A UNCHANGED (tvars, evars, ovars, svars)

These two actions implement the handling of incarnation requests.

IncarnateRequest =
Adp e PID, r € RM, c € Coord, m € msgs :
A m.type = “Recover” Am.pid=pAm.rm=r
A=3i €1..Len(tHist):
tHist[i] = [vt — “Incarnate”, pid — p, rm — r] p is not incarnating.
A recSet’ = [recSet EXCePT ![c] =@ U
{[vt — “Incarnate”, pid — p, rm — r]}]
AbSet’” =[bSet ExceeT ![c]=@U
{[vt — “Incarnate”, pid — p, rm — r]}]
A UNCHANGED (vHist, tHist, instances, ovars, msgs)

IncarnateReply =
LeT Urm(tine) =
LET try[i €0.. tinc] =
IF1=0

204 Log Service

THEN () Not reincarn
ELSE try[i—1]o1r A tHist[i] € TID transaction,
A3v € vHist : is committed be-
Av.tr = tHist[] fore tinc, r took
Av.rm = tHist[tinc].rm pare in it
THEN ((CHOOSE v € vHist :
Av.tr = tHist[1]
A v.rm = tHist[tinc].rm).upd)
ELSE ()

IN try[tinc]

Inc(tine) = Cardinality({i € 1.. tinc :
A tHist[i] ¢ TID
A tHist[i].rm = tHist[tinc].rm})

IN dtinc € 1.. Len(tHist), ¢ € Coord :
A tHist[tinc] € recSet[c]
A recSet’ = [recSet EXCEPT ! [c] = @\ {tHist[tinc]}]
A msgs’ = msgs U
{[type — “Recovered”, rm — tHist[tinc].rm, upd — Urm(tinc),
inc — Inc(tinc), pid — tHist[tinc].pid],
[type — “Incarnated”, rm — tHist[tinc].rm, inc — Inc(tinc)]}
A UNCHANGED (vHist, tHist, bSet, instances, ovars)

This action handles votes issued by participants.

VoteRequest =

dc¢ € Coord, m € msgs :
A m.type = “Vote”
A—Jev € (bSet[c] N EVotes)U vHist :

A ev.rm = m.rm

Aev.tr =m.tr

A bSet’ = [bSet ExcepT ![c] = @U

{[pid — m.pid, rm — m.rm, tr — m.tr,
tset — m.tset, vt — m.vt, upd — m.upd]}]

A UNCHANGED (vHist, tHist, recSet, instances, msgs, ovars)

The next two actions are used in proposing and deciding consensus instances. It is used for handlling
votes as well as incarnation changes.

CoordPropose =
Adc e Coord :
A bSet[c] # {}
A Propose(instances, bSet[c])
A UNCHANGED (svars, msgs)

CoordDecide =
LeT D = Decide(instances)

B.2 Coordinated Implementation 205

EVotesInD = {v € D : Av.vt € {*Commit”, “Abort”}
A—Jov € vHist : A ov.rm = v.rm
Aov.tr =wv.tr}

V2V(v) = [rm— v.rm, tr — v.tr, tset — v.tset, pid — v.pid,

vt — 1F rm2pid(v.rm) = v.pid THEN v.vt ELSE “Abort”,
upd — 1F rm2pid(v.rm) = v.pid THEN v.upd ELSE {}]

VotesinD

{V2V(v):v € EVotesInD}

Set28eq(S) =
LET set2seq[SS € suBseT §] =
1F SS = {} THEN ()
ELSE LET SS = CHOOSE $s € 99 : TRUE

IN Append(set2seq[SS\ {ss}], ss)
IN set2seq[S]

newCommitted = {t € TID : A Outcome(vHist, t) =“Undefined”
A Outcome(vHist', t) = “Commit”}
newTermMsgs = {[type — “Terminated”, tr — ¢, out — “Commit”] :
t € newCommitted}
(@]
{[type — “Terminated”, tr — v.tr, out — “Abort”] :
v € {vv € VotesInD : vv.vt =“Abort”}}
IncarnationReqInD = {i € D :i.vt =*“Incarnate’}

IN A D # NoProposal
A vHist’" = vHist U VotesInD
Amsgs’ = msgs U newTermMsgs
A tHist' = tHist o (1IF newCommitted # {}
THEN Set2Seq(newCommitted)

ELSE ())
o Set2Seq(IncarnationReqInD)
A instances’ = instances + 1

A bSet’ = [c € Coord — bSet[c]\ D]
A UNCHANGED (recSet, ovars)

The disjunction of Coordinator’s actions.
e Process requests to incarnate a resource manager.
e Process votes from resource managers.
e Handle consensus instances.
CoordActions =
A V IncarnateRequest V IncarnateReply
V VoteRequest
V CoordPropose V CoordDecide
A UNCHANGED (tvars, evars, rvars)

206 Log Service

Specification
The next-state action, as a disjunction of all possible action.
Next =
V RMActions vV CoordActions Implement RMActions
VvV TMActions Implement T'MActions
V EnvActions Implement EnvActions
The specification.
Spec = Init A O[Next] quars)
Refinement Mapping

[r € RM — 1F pid2rm[p] = “Incarnating” THEN NoRM
ELSE pid2rm[p]]

rm_pid2rm

rm_rm2pid = [r € RM — rm2pid(r)]
rm_LastConcSet = {}
rm_vHist = {[f € poMAIN v\ {“pid’} — v.f]: v € vHist}

rm_tHist = LET Test(e) = e & IncarnT
IN SelectSeq(vHist, Test)

B.2.2 Implementation Proof

To prove that the Coordinated Log Service (CLS) is, indeed, an implementation of
the Log Service’s specification (LS) we give a refinement mapping of the CLS’s vari-
ables to the LS’s, and show that the execution of CLS’s actions implies the execution
of one of LS’s actions, or in a stuttering step. For a thorough explanation of refine-
ment mappings the reader is referred to the following works: [] and
[1.

We substitute every expression of the specification for an overlined expression
with the same name, meaning that any variable defined in its scope is replaced
by an overlined one, with the same name; these overlined variables witness the
implementation of the specification. We prove that these witnesses exist by defining
them from the variables in the implementation, i.e., by giving a refinement mapping.

The actual refinement is defined at the end of the specification. Below we simply
rename each definition to conform the overlined notation. Variables that are not
redefined are the same as in the implementation.

pid2rm = rm_pid2rm

B.2 Coordinated Implementation 207

rm2pid = rm_rm2pid

LastConcSet = rm_LastConcSet

VHist = rm_vHist

tHist = rm_tHist

Proposition 18 Spec = Spec

1. AssuMEe: Init
PROVE: Init
Proor: Except for LastConcSet and rm2pid, all the variables are initialized in
Init exactly as their overlined counterparts in Init. By the refinement mapping,
LastConcSet is always the empty set, therefore conforming the initialization in
Init. Finally, by the definition of operator rm2pid, tHist = () implies that rm2pid
maps from all resource managers to NoPid.

2. AssuME: Next
PROVE: Next V UNCHANGED (Svars, tvars, rvars, evars)
2.1. Assumi: RMActions
Prove: RMActions
2.1.1. AssuME: IncarnateStub A UNCHANGED (tvars, evars)
ProveE: < Alncarnate V UNCHANGED (svars, rvars)
A UNCHANGED (tvars, evars)

ProOOF SKETCH: We want to show that the execution of IncarnateStart(p,r) for some pro-
cess p and resource manager r leads to the execution IncarnateEnd(p,r), if p does not
crash and its messages are lost. Because IncarnateEnd(p,r) can only be executed if
IncarnateStart(p, r) was previously executed and because the pre-conditions of Incarnate
shared with IncarnateStart do not change until IncarnateEnd is executed, and the conditions
of Incarnate shared with IncarnateEnd complement the set of Incarnate pre and post-conditions
already true, the execution of IncarnateEnd implies an Incarnate step. If just the start action
is performed, then it implies a stuttering step of Spec.

ProoF: The IncarnateStub action is a disjunction of actions

e IncarnateStart,

e IncarnateEnd, and

* Desincarnate
It is clear by the specification that action IncarnateEnd(p,r) cannot exe-
cute for a resource manager r and process p before an IncarnateStart(p,r)
is executed: IncarnateEnd(p,r) only executes after receiving a message
m = [type — (Recovered), rm — r, pid — p], and such message will not be
sent by action IncarnateReply before a vote v = [vt — “Incarnate”, pid —
p,rm — r] is added to tHist. Hence, v will only be added to ¢tHist in action
CoordDecide, after being proposed in action CoordPropose. CoordPropose

208

Log Service

can only propose such value if it belongs to bSet[c], for some coordinator c,
what can only happen if a request message for p to incarnate r is received in
action IncarnateRequest, and such message is only sent by the execution of
action IncarnateStart(p,r).

When IncarnateStart(p,r) is executed, it adds a “Recover” message with
fields pid = p and rm = r to msgs; this is the first pre-condition for ac-
tion IncarnateRequest(p, r) to execute. The second pre-condition is satisfied
until action CoordDecide adds the “Incarnate” vote for p and r to tHist,
what can only happen if IncarnateRequest has been executed first, since
IncarnateRequest is the only action that creates “Incarnate” votes.

When the action IncarnateRequest is executed, it adds an “Incarnate” vote
for p and r to bSet[c], for some coordinator ¢, making it not empty. This is
the only pre-condition for the C'oordPropose action execute for coordinator c,
and the action is eventually executed. Since coordinators insist on proposing
its bSet[c] until it is empty, and only removes votes from it if they are de-
cided in some instance, ¢ will keep proposing the “Incarnate” vote until it is
decided or ¢ crashes. Coordinators are deterministic state machines, and can
be replicated at will (their state is only based on the outcomes of consensus
instances) and, therefore, as long as coordinators can recover after crashes or
infinitely many of them are available, some coordinator eventually completes
the execution of IncarnateRequest and IncarnateReply.

By the consensus problem definition, C-Progress ensures that a decision will
eventually be reached on each instance (given that the minimum number of
acceptors eventually stay up long enough for the instances to finish). If p
crashes, then the request for incarnation is simply discarded or is decided
but will be followed by another request for the same 7.

When an instance containing the vote for p to incarnate r is decided, the vote
is added to tHist, and action IncarnateReply will be enabled for all coordi-
nators that proposed it. If ¢ crashes before this action is performed, p will be
blocked and never execute another action, as if it had crashed. Because the
change made by IncarnateStart(r, p) to variable pid2rm[p] does not affect
pid2rm, this would imply that (svars,rvars) did not change.

Once IncarnateReply is performed, p will eventually receive the “Recovered”
message, unless ¢ crashes, enabling action IncarnateEnd. By the definition
of Urm, p will receive all the updates performed by previous incarnations of
r. By the definition of ApplyUpdates, the p will apply all the updates and
recover the committed state r had on its previous incarnation. The pre con-
dition of IncarnateStub, IncarnatedStart, and IncarnatedEnd, and the post-
conditions of IncarnateEnd imply the pre and post-conditions of Incarnate.
By the assumption, variables in (tvars,evars) do not change.

B.2 Coordinated Implementation 209

2.1.2. AssuME: TerminateStub A UNCHANGED (tvars, evars, ovars, svars)
ProvE: < A Terminate V UNCHANGED (svars, rvars)
A UNCHANGED (tvars, evars)

PrOOF SKETCH: The pre-conditions of action TerminateStub are the same as those of Terminate.
Therefore, it is enough to show that each of TerminateStub’s sub-actions, VoteForMyself,
VoteForOthers, Learn, and the actions they lead to, imply a step of their equivalent overlined
actions.

2.1.2.1. Assume: VoteForMyself(r,t)
Prove: < A VoteForMyself(r,t)

V UNCHANGED (terminatingAt, vHist, tHist)

A UNCHANGED (terminatedAt)
Because the pre-condition and the first post-condition of both actions are
the same, it is enough to prove that the second post-condition of action
VoteForMyself (r, t), the addition of a message m to msgs, may the execu-
tion of Vote(v), where m is “Vote” message and v is a vote, and the fields
vt, upd, tr, tset, and rm of m and v are equal, or has no effect on variables
(terminatingAt, vHist, tHist).
If message m is received by some coordinator c, a vote with its contents,
therefore equal to v, is added to bSet[c], enabling the action CoordPropose.
Action CoordPropose will be executed with a proposal containing this vote
until it is decided and added to vHist by action CoordDecide, where all
coordinators can see it (vHist is changed deterministically based on the
consensus outcomes, and would be the same for all coordinators if repre-
sented independently at each one.), or until ¢ crashes. If no coordinator
succeeds in getting the vote decided, then either another vote, resulting
from the execution of VoteForOthers(r,t) will be decided, or all resource
managers involved in transaction ¢ will have crashed before their “Vote”
messages are seen by non-faulty coordinators. It is up to the transaction
manager, to then vote to abort the transaction; in the case the transac-
tion manager also crashes and no vote for ¢ is ever decided, ¢ is simply
forgotten, implying that (svars,rvars) is kept unchanged.
CoordDecide also appends newly committed transactions to tHist: each
transaction is added in a different set, as if they were not concurrent, and
LastConcSet is always empty, ensuring its type invariance and constructing
tHist in a way compatible with the specification of tHist. Because this is
the only action to change vHist and tHist, the mapping to vHist and tHist
is correct.
(tvars, evars) are kept since none of actions changes them.

2.1.2.2. AssumMme: VoteForOthers(r,t)
Prove: < A VoteForOthers(r,t) V UNCHANGED (vHist, tHist)
A UNCHANGED (terminatedAt, terminatingAt)

210 Log Service

Proor: It is true by the same arguments of step 2.1.2.1.
2.1.2.3. AssuME: Learn(r,t)
PrROVE: ALearn(r,t) V UNCHANGED (terminatedAt, terminatingAt)
A UNCHANGED (svars)
PrOOF: As action Learn(r,t) has the same post-conditions of Learn(r,t),
it is enough to show that the pre-conditions of the first imply the pre-
conditions of the latter. Since the reception of “Terminated” message for
transaction ¢ implies that it was sent and since it is only sent by action
CoordDecide if the transaction has terminated, the reception of such mes-
sage implies that the Outcome(vHist,t) # “Undefined”.
2.1.2.4. Q.E.D.
2.1.3. Q.E.D.
2.2. TMActions = TMActions
2.2.1. AddRM = AddRM
Proor: Trivially true, since the their definitions are equal.
2.2.2. RequestTerm = RequestTerm
Proor: Trivially true, since the their definitions are equal.
2.2.3. UNCHANGED (rvars, evars, svars, msgs, ovars)
=> UNCHANGED (svars, rvars, evars)
Proor:Clearly true since either the left-hand side of the expression contains
all variables in the spec.
2.2.4. Q.E.D.
2.3. EnvActions = EnvActions
Proor: Trivially true, since their definitions are equal.
2.4. Q.ED.
3. Q.E.D.

B.3 Uncoordinated Implementation

B.3.1 Specification

[MODULE CoordLogService
This module is specifies the log service’s Coordinated Implementation.

EXTENDS Naturals, FiniteSets, Sequences,
LogServiceConstants,
Consensus

CcONSTANTS Coord

B.3 Uncoordinated Implementation

211

The environment’s variables:
badProc processes that crashed
suspect process X process suspicions.

msgs messages sent.
VARIABLES badProc,
suspect,
msgs

The Coordinators’s variables:
VHistAt votes received per coordinator.
tHistAt transactions that committed.

recSet set of awaiting recovery transactions.

bSet sets of votes to be proposed.

instances instance to be used by the coordinator(s).

VARIABLES vHist,
tHist,
recSet,
bSet,

stances

The Resource Managers’ variables:

terminatingAt transactions terminating at rm.
terminatedAt transactions terminated at rm.

pid2rm PID — RM.
incarns the incarnation of each rm.
outcome local view of Outcome.
VARIABLES terminatingAt,

terminatedAt,

pid2rm,

mcarns,

outcome

The Transaction Managers’s variables:

termReq transactions requested to terminate.
part participants on each transaction, and incarnating process.

VARIABLES termReq,
part

Defining some aliases.

svars = (vHist, tHist, recSet, bSet, instances)

rvars = (terminatingAt, terminatedAt, pid2rm, incarns, outcome)
tvars = (part, termReq)

evars = (badProc, suspect)

ovars = (decision)

avars = (svars, rvars, tvars, evars, ovars, msgs)

212

Log Service

Types

Incarnating = cHOOSE p : p ¢ (PID U{NoRM})

Vote extended with PID

EVotes = [rm: RM, tr: TID,

tset : SUBSET RM,

vt {“Commit”, “Abort”}, upd : Update, pid : PID]

Votes to incarnate a resource manager.

IncarnT = [vt : {“Incarnate”},

Types of messages exchanged.
Msgs = [type : {“Recover’},
[type : {“Recovered”}

pid : PID, rm : RM]

rm : RM, pid : PID]U

,rm : RM, pid : PID,

upd : Seq(Update), inc : Nat] U
[type : {“Incarnated”}, rm : RM, inc : Nat] U

[type : {“Vote},

tset : SUBSET RM, vt : {“Commit”, “Abort”}, upd : Update] U
[type : {“Terminated”}, tr : TID, out : {*Commit”, “Abort”}]

rm : RM, pid : PID, tr : TID,

Type invariant.

Typelnvariant =

Invariants

€ [Coord — suBseT (EVotes U IncarnT)]

A vHist € suBseT EVotes

A tHist € Seq(TID U IncarnT)
A bSet

ArecSet € SUBSET IncarnT

A instances € Nat

A terminatingAt € [PID — suBseT TID]
A terminatedAt € [PID — suBseT TID]

A pid2rm
A outcome
A part

A termReq
A badProc
A suspect
A msgs

A Consensus Typelnv

€ [PID — RM U {Incarnating, NoRM?}]
€ [PID — [TID — {*Undefined”, “Abort”, “Commit”}]]
€ [TID — unioN {[S — PID] : S € suBseT RM}]
€ suBseT 11D

€ suBseT PID

€ [PID — [PID — BOOLEAN]]

€ SUBSET Msgs

A

Initial State

received,

being

Init = No vote
A vHist ={} no transaction com-
A tHist =) mitted, nor
A bSet =[c € Coord — {}] committed.
A recSet = [c € Coord — {}]

B.3 Uncoordinated Implementation 213

A instances =0 No transactions termi-
A terminatingAt = [p € PID — {}] nating. No transac-
A terminatedAt = [p € PID — {}] tions terminating. No
A pid2rm =[r € PID — NoRM] RM is incarnated.

A outcome =[p € PID — [t € TID — “Undefined”]]

A incarns =[p € PID — 0] No transaction started.
A part =[t € TID — [e € {} — {}]] No termination request
A termReq ={} issued. No bad process.
A badProc ={}

A suspect = [p € PID — [q € PID —> FALSE]] No message sent

A msgs ={}

A ConsensusInit

Operators

The pid of the process currently incarnating 7.
rm2pid(r) =
irdp e PID,ie€1.. Len(tHist) :
A tHist[1] = [vt — “Incarnate”, pid — p, rm — r]
A—-3dje€i+1.. Len(tHist), op € PID :
tHist[j] = [vt — “Incarnate”, pid — op, rm — 7]
THEN CHOOSE p € PID :
diel.. Len(tHist):
A tHist[i] = [vt — “Incarnate”, pid — p, rm +— 7]
A-3je€i+1.. Len(tHist), op € PID :
tHist[j] = [vt — “Incarnate”, pid — op, rm — r]
ELSE NoPID

Operator Qutcome(h, t) gives the termination status of transaction ¢, considering the history of votes
h.
Outcome(h, t) =
IFdv € h:vitr=tAv.vt =“Abort”
THEN “Abort”
ELSE IFdv € h:
ANv.tr=1
AV p € wv.tset:
Jweh: ANvwerm=p
ANvv.dr =1
Awvv.ot =“Commit”
THEN “Commit”
ELSE “Undefined”

Actions

Environment

214 Log Service

This action crashes a good process.

Crash =
A3 p € (PID\ badProc) : badProc’ = badProc U {p}
A UNCHANGED (suspect)

This action changes the suspicion status.

ChangeSuspicion =
Adp € (PID\ badProc), g € PID :

Ap#q
A suspect’ = [suspect ExCePT ! [p][q] = ~@]
A UNCHANGED (badProc)

EnvActions:
e process crash.
e change suspicions.

. A ..
EnvActions = A Crash V ChangeSuspicion
A UNCHANGED (msgs, svars, tvars, rvars, ovars)
Transaction Manager
Adds a resource manager to a non-terminated transaction.
The transaction manager will only succeed in the adding a resource manager r to a transaction ¢ if

r was not crashed by the time it was contacted, and replied to operation request.

AddRM = t has not tried to terminate yet.
A3dt e (TID\ termReq), r has been incarnated, replied
re{re RM: Arm2pid(r)# NoPID to an operation, and was not a

Arm2pid(r) ¢ badProc} : participant yet.
A 1 & DOMAIN part[t]
A part’ = [part Except ![t] =
[e € DOMAIN @ U {r} — IF ¢ € DOMAIN @
THEN @[¢e]
ELSE rm2pid(r)]]
A UNCHANGED (termReq)

Request the termination of a transaction.

The transaction manager can, at any time, try to terminate a transaction it has not tried to terminate
before, and that executed some operation.

RequestTerm = A3t € (TID\ termReq) : t has not tried to terminate yet.
A part[t] # ()
A termReq’ = termReq U {t}
A UNCHANGED (part)

The disjunction of Transaction Manager’s actions.
o Add a resource manager as a participant.
e Try to terminate a transaction.

TMActions = A V AddRM

B.3 Uncoordinated Implementation

215

V RequestTerm
A UNCHANGED (rvars, evars, svars, msgs, ovars)

Log Service
Starts the incarnate procedure.
IncarnateStart(p, r) = p is neither incarnating
A pid2rm[p] = NoRM nor trying and 7 is not in-
AV rm2pid(r) = NoPID carnated or its process is

vV rm2pid(r) # NoPID A suspect[p][rm2pid(r)] supected.
A pid2rm’ = [pid2rm ExcepT ! [p] = Incarnating]
A msgs’ = msgs U {[type — “Recover”, pid — p, rm — r]}
A UNCHANGED (incarns)

Ends the incarnate procedure.

IncarnateEnd(p, r) =
LET ApplyUpdates(u) =
LET apply[i € 1.. Len(w)] =
1F i = Len(u) THEN ApplyUpdate(u[i])
ELSE ApplyUpdate(ul[i]) A apply[i + 1]

IN IF u = () THEN TRUE
ELSE apply[1]

IN A pid2rm[p] = Incarnating

Adm € msgs :
A m.type = “Recovered”
Am.pid =p
Am.rm=r
A pid2rm’ = [pid2rm except ! [p] = r]
Aincarns’ = [incarns EXCEPT ! [p] = m.inc]
A ApplyUpdates(m.upd)

A UNCHANGED (msgs)

Executed by process p to give up incarnating r, when another process incarnates it.

Desincarnate(p, 1) =

A incarns[p] >0

Adm € msgs :
A m.type = “Incarnated”
Am.rm=r
A m.inc > incarns[p]

Aincarns’ = [incarns EXCEPT ! [p] = 0]

A UNCHANGED (msgs, pid2rm)

IncarnateStub is a “stub” to the abstract log service Incarnate action.

IncarnateStub =
Adp € PID\ badProc, r € RM : p is good
V IncarnateStart(p, 1)

216 Log Service

V IncarnateEnd(p, r)
V Desincarnate(p,)
A UNCHANGED (terminatingAt, terminatedAt, outcome)

VoteForMyself is executed to vote on some transaction.
VoteForMyself (r, t) =
rm has not tried to terminate ¢.
At € (termReq \ (terminatingAt[part[t][r]] U terminatedAt[part[t][r]]))
A terminatingAt’ = [terminatingAt except ! [part[t][r]] = @ U {t}]
AV msgs’ = msgs U {[type — “Vote”, pid — part[t][r], rm — T,
tr — t, tset — DOMAIN part[t], Vote
vt — “Commit”, upd — GetUpdate(r, t)]} com-
V msgs’ = msgs U {[type — “Vote”, pid — part[t][r], rm — r, Mit
tr — t, tset — {r}, vt — “Abort”, upd — {}]}

A UNCHANGED (terminatedAt, outcome) Vote
Abort.
VoteForOthers is executed to vote for some slow participant.
VoteForOthers(r, t) = rm tried to terminate ¢ but did
At € terminatingAt[part[t][r]] not succeed yet.

A outcome[part[t][r]][t] = “Undefined”
A—Im € msgs :
A m.type = “Terminated”
Am.tr=t
A 3Js € DOMAIN part[t] :
A suspect[part[t][r]][part[t][s]]
A msgs’ = msgs U
{[type — “Vote”, pid — part[t][s], rm — s, tr— t, Send an
tset — DOMAIN part[t], vt — “Abort”, upd — {}]} abort vote.
A UNCHANGED (terminatingAt, terminatedAt, outcome)

Learn action is performed when a new transaction has terminated.

Learn(r, t) = outcome[t] is undefined but ¢
A outcome[part[t][r]][t] = “Undefined” terminated.
Adm € msgs :

A m.type = “Terminated”

Am.dr=t

A outcome’ = [outcome ExCepT ! [part[t][r]][t] = m.out]
A terminatingAt’ = [terminatingAt except ! [part[t][r]] = @\ {t}]
A terminatedAt’ = [terminatedAt Except ![part[t][r]] = @U {t}]
A UNCHANGED (msgs)

Action TerminateStub is executed by rm to step towards transaction t’s termination.

It is a “stub” to the abstract log service’s Terminate action.

TerminateStub =

B.3 Uncoordinated Implementation

217

ANdr e RM,te TID: r is a participant of ¢. the process is
A T € DOMAIN part[t] still alive, and sees itself as the rm.
A part[t][r] ¢ badProc first attempt to terminate ¢. other at-
A pid2rm[part[t][r]] =r tempts Learn that it was decided.

A V VoteForMuyself (r, t)
V VoteForOthers(r, t)
V Learn(r, t)
A UNCHANGED (incarns, pid2rm)

The disjunction of Resource Manager’s actions.
e Execute the incarnation procedure.
e Try to terminate a transaction.

RMActions =
AV IncarnateStub
Vv TerminateStub
A UNCHANGED (tvars, evars, ovars, svars)

These two actions implement the handling of incarnation requests.

IncarnateRequest =
Adp e PID, r € RM, c € Coord, m € msgs :
A m.type = “Recover” Am.pid =p Am.rm=r
A-3i €1..Len(tHist):
tHist[i] = [vt — “Incarnate”, pid — p, rm — r] p is not incarnating.
A recSet’ = [recSet ExcepT ![c] =@ U
{[vt — “Incarnate”, pid — p, rm — r]}]
A bSet’ =[bSet ExcepT ![c]=@U
{[vt — “Incarnate”, pid — p, rm — r]}]
A UNCHANGED (vHist, tHist, instances, ovars, msgs)

IncarnateReply =
LeT Urm(tinc) =
LET try[i €0 .. tinc] =

IFi=0
THEN () Not reincarn
ELSE try[i—1]o1F A tHist[i] € TID transaction,

ANJv € vHist :
Av.tr = tHist[1]
A v.rm = tHist[tinc].r
THEN ((CHOOSE v € vHist :
Av.tr = tHist[1]
A v.rm = tHist[tinc].rm).upd)

is committed be-
fore tinc, r took
m part in it.

ELSE ()
IN try[tinc]

Inc(tine) = Cardinality({i € 1.. tinc :
A tHist[i] ¢ TID
A tHist[i].rm = tHist[tinc].rm})

218 Log Service

IN dtinc € 1.. Len(tHist), ¢ € Coord :
A tHist[tinc] € recSet[c]
A recSet’ = [recSet EXCEPT ! [c] = @\ {tHist[tinc]}]
A msgs’ = msgs U
{[type — “Recovered”, rm — tHist[tinc].rm, upd — Urm(tinc),
inc — Inc(tinc), pid — tHist[tinc].pid],
[type — “Incarnated”, rm — tHist[tinc].rm, inc — Inc(tinc)]}
A UNCHANGED (vHist, tHist, bSet, instances, ovars)

This action handles votes issued by participants.

VoteRequest =

dc¢ € Coord, m € msgs :
A m.type = “Vote”
A—Jev € (bSet[c] N EVotes)U vHist :

A ev.rm = m.rm

Aev.tr =m.tr

A bSet’ = [bSet ExcepT ![c] = @U

{[pid — m.pid, rm — m.rm, tr — m.tr,
tset — m.tset, vt — m.vt, upd — m.upd]}]

A UNCHANGED (vHist, tHist, recSet, instances, msgs, ovars)

The next two actions are used in proposing and deciding consensus instances. It is used for handlling
votes as well as incarnation changes.

CoordPropose =
Adc e Coord :
A bSet[c] # {}
A Propose(instances, bSet[c])
A UNCHANGED (svars, msgs)

CoordDecide =
LET D = Decide(instances)

EVotesInD = {v € D: Av.vt € {*Commit”, “Abort”}
A-dov € vHist : A ov.rm = v.rm
Aov.tr =wv.tr}

V2V(v) = [rm— v.rm, tr — v.tr, tset — v.tset, pid — v.pid,
vt +— 1F rm2pid(v.rm) = v.pid THEN v.vt ELSE “Abort”,
upd — 1F rm2pid(v.rm) = v.pid THEN v.upd ELSE {}]

VotesInD = {V2V(v): v € EVotesInD}

Set2Seq(S) =
LET set2seq[SS € suBseT §] =
1 SS = {} THEN ()
ELSE LET S§ = CHOOSE $s € 99 : TRUE

IN Append(set2seq[SS\ {ss}], ss)
IN set2seq[S]

B.3 Uncoordinated Implementation

newCommitted = {t € TID : A Outcome(vHist, t) =“Undefined”
A Outcome(vHist', t) = “Commit”}

newTermMsgs = {[type — “Terminated”, tr — t, out — “Commit”] :

t € newCommitted}
@]

{[type — “Terminated”, tr — v.tr, out — “Abort”] :

v € {vv € VotesInD : vv.vt =“Abort”}}

IncarnationReqInD = {i € D :i.vt =*“Incarnate’}

IN A D # NoProposal
A vHist’ = vHist U VotesInD
Amsgs’ = msgs U newTermMsgs
A tHist' = tHist o (If newCommitted # {}
THEN Set2Seq(newCommitted)

ELSE ())

o Set2Seq(IncarnationReqInD)
A instances’ = instances + 1

A bSet’ = [c € Coord — bSet[c]\ D]
A UNCHANGED (recSet, ovars)

The disjunction of Coordinator’s actions.

e Process requests to incarnate a resource manager.
e Process votes from resource managers.
e Handle consensus instances.

CoordActions =

A V IncarnateRequest V IncarnateReply
V VoteRequest

V CoordPropose V CoordDecide
A UNCHANGED (tvars, evars, rvars)

Specification
The next-state action, as a disjunction of all possible action.
Neaxt =
V RMActions V CoordActions Implement RMActions
Vv TMActions Implement T'MActions
V EnvActions Implement EnvActions
The specification.

Spec = Init AD[Next]quars)

Refinement Mapping
rm_pid2rm = [r € RM — 1¥ pid2rm[p] = “Incarnating” THEN NoRM

220 Log Service

ELSE pid2rm[p]]
rm_rm2pid = [r € RM — rm2pid(r)]
rm_LastConcSet = {}
rm-vHist = {[f € poMAIN v\ {“pid’} — v.f] : v € vHist}

rm_tHist = LET Test(e) = e ¢ IncarnT
IN SelectSeq(vHist, Test)

B.3.2 Implementation Proof

To prove that the Coordinated Log Service (CLS) is, indeed, an implementation of
the Log Service’s specification (LS) we give a refinement mapping of the CLS’s vari-
ables to the LS’s, and show that the execution of CLS’s actions implies the execution
of one of LS’s actions, or in a stuttering step. For a thorough explanation of refine-
ment mappings the reader is referred to the following works: [] and
[1.

We substitute every expression of the specification for an overlined expression
with the same name, meaning that any variable defined in its scope is replaced
by an overlined one, with the same name; these overlined variables witness the
implementation of the specification. We prove that these witnesses exist by defining
them from the variables in the implementation, i.e., by giving a refinement mapping.

The actual refinement is defined at the end of the specification. Below we simply
rename each definition to conform the overlined notation. Variables that are not
redefined are the same as in the implementation.

pidZ—rm = rm_pid2rm

rm2pid = rm_rm2pid
LastConcSet = rm_LastConcSet
VHist = rm_vHist

tHist = rm_tHist

Proposition 19 Spec = Spec

1. ASSUME:]izt
Prove: Init

B.3 Uncoordinated Implementation 221

Proor: Except for LastConcSet and rm2pid, all the variables are initialized in
Init exactly as their overlined counterparts in Init. By the refinement mapping,
LastConcSet is always the empty set, therefore conforming the initialization in
Init. Finally, by the definition of operator rm2pid, tHist = () implies that rm2pid
maps from all resource managers to NoPid.

2. AssuME: Next
PROVE: Next V UNCHANGED (svars, tvars, rvars, evars)
2.1. Assumi: RMActions
ProOVE: RMActions
2.1.1. AssuME: IncarnateStub A UNCHANGED (tvars, evars)
Prove: < Alncarnate V UNCHANGED (svars, rvars)
A UNCHANGED (tvars, evars)

PROOF SKETCH: We want to show that the execution of IncarnateStart(p,r) for some pro-
cess p and resource manager r leads to the execution IncarnateEnd(p,r), if p does not
crash and its messages are lost. Because IncarnateEnd(p,r) can only be executed if
IncarnateStart(p,r) was previously executed and because the pre-conditions of Incarnate
shared with IncarnateStart do not change until IncarnateEnd is executed, and the conditions
of Incarnate shared with IncarnateEnd complement the set of Incarnate pre and post-conditions
already true, the execution of IncarnateEnd implies an Incarnate step. If just the start action
is performed, then it implies a stuttering step of Spec.

Proor: The IncarnateStub action is a disjunction of actions

* IncarnateStart,

e Incarnatebnd, and

* Desincarnate
It is clear by the specification that action IncarnateEnd(p,r) cannot exe-
cute for a resource manager r and process p before an IncarnateStart(p,r)
is executed: IncarnateEnd(p,r) only executes after receiving a message
m = [type — (Recovered), rm — r, pid — p], and such message will not be
sent by action IncarnateReply before a vote v = [vt — “Incarnate”, pid —
p,rm — r] is added to tHist. Hence, v will only be added to tHist in action
CoordDecide, after being proposed in action CoordPropose. CoordPropose
can only propose such value if it belongs to bSet[c], for some coordinator c,
what can only happen if a request message for p to incarnate r is received in
action IncarnateRequest, and such message is only sent by the execution of
action IncarnateStart(p, r).
When IncarnateStart(p,r) is executed, it adds a “Recover” message with
fields pid = p and rm = r to msgs; this is the first pre-condition for ac-
tion IncarnateRequest(p, r) to execute. The second pre-condition is satisfied
until action CoordDecide adds the “Incarnate” vote for p and r to tHist,
what can only happen if IncarnateRequest has been executed first, since
IncarnateRequest is the only action that creates “Incarnate” votes.

222

Log Service

When the action IncarnateRequest is executed, it adds an “Incarnate” vote
for p and r to bSet[c], for some coordinator ¢, making it not empty. This is
the only pre-condition for the C'oordPropose action execute for coordinator c,
and the action is eventually executed. Since coordinators insist on proposing
its bSet[c] until it is empty, and only removes votes from it if they are de-
cided in some instance, ¢ will keep proposing the “Incarnate” vote until it is
decided or ¢ crashes. Coordinators are deterministic state machines, and can
be replicated at will (their state is only based on the outcomes of consensus
instances) and, therefore, as long as coordinators can recover after crashes or
infinitely many of them are available, some coordinator eventually completes
the execution of IncarnateRequest and IncarnateReply.

By the consensus problem definition, C-Progress ensures that a decision will
eventually be reached on each instance (given that the minimum number of
acceptors eventually stay up long enough for the instances to finish). If p
crashes, then the request for incarnation is simply discarded or is decided
but will be followed by another request for the same 7.

When an instance containing the vote for p to incarnate r is decided, the vote
is added to tHist, and action IncarnateReply will be enabled for all coordi-
nators that proposed it. If ¢ crashes before this action is performed, p will be
blocked and never execute another action, as if it had crashed. Because the
change made by IncarnateStart(r,p) to variable pid2rm[p] does not affect
pid2rm, this would imply that (svars, rvars) did not change.

Once IncarnateReply is performed, p will eventually receive the “Recovered”
message, unless ¢ crashes, enabling action /ncarnateEnd. By the definition
of Urm, p will receive all the updates performed by previous incarnations of
r. By the definition of ApplyUpdates, the p will apply all the updates and
recover the committed state r had on its previous incarnation. The pre con-
dition of IncarnateStub, IncarnatedStart, and IncarnatedEnd, and the post-
conditions of IncarnateEnd imply the pre and post-conditions of Incarnate.
By the assumption, variables in (tvars,evars) do not change.

2.1.2. AssuME: TerminateStub A UNCHANGED (tvars, evars, ovars, svars)

ProvE: < A Terminate V UNCHANGED (svars, rvars)
A UNCHANGED (tvars, evars)

Proor skeTcH: The pre-conditions of action TerminateStub are the same as those of Terminate.
Therefore, it is enough to show that each of TerminateStub’s sub-actions, VoteForMyself,
VoteForOthers, Learn, and the actions they lead to, imply a step of their equivalent overlined
actions.

2.1.2.1. AssuME: VoteForMuyself(r,t)
Prove: < A VoteForMyself(r,t)
V UNCHANGED (terminatingAt, vHist, tHist)
A UNCHANGED (terminatedAt)

B.3 Uncoordinated Implementation 223

Because the pre-condition and the first post-condition of both actions are
the same, it is enough to prove that the second post-condition of action
VoteForMyself (r, t), the addition of a message m to msgs, may the execu-
tion of Vote(v), where m is “Vote” message and v is a vote, and the fields
vt, upd, tr, tset, and rm of m and v are equal, or has no effect on variables
(terminatingAt, vHist, tHist).
If message m is received by some coordinator ¢, a vote with its contents,
therefore equal to v, is added to bSet[c], enabling the action CoordPropose.
Action CoordPropose will be executed with a proposal containing this vote
until it is decided and added to vHist by action CoordDecide, where all
coordinators can see it (vHist is changed deterministically based on the
consensus outcomes, and would be the same for all coordinators if repre-
sented independently at each one.), or until ¢ crashes. If no coordinator
succeeds in getting the vote decided, then either another vote, resulting
from the execution of VoteForOthers(r,t) will be decided, or all resource
managers involved in transaction ¢ will have crashed before their “Vote”
messages are seen by non-faulty coordinators. It is up to the transaction
manager, to then vote to abort the transaction; in the case the transac-
tion manager also crashes and no vote for ¢ is ever decided, ¢ is simply
forgotten, implying that (svars,rvars) is kept unchanged.
CoordDecide also appends newly committed transactions to tHist: each
transaction is added in a different set, as if they were not concurrent, and
LastConcSet is always empty, ensuring its type invariance and constructing
tHist in a way compatible with the specification of tHist. Because this is
the only action to change vHist and tHist, the mapping to vHist and tHist
is correct.
(tvars, evars) are kept since none of actions changes them.

2.1.2.2. AssuMe: VoteForOthers(r,t)

Prove: < A VoteForOthers(r,t) V UNCHANGED (vHist, tHist)
A UNCHANGED (terminatedAt, terminatingAt)

Proor: It is true by the same arguments of step 2.1.2.1.

2.1.2.3. AssuME: Learn(r,t)

PrOVE: ALearn(r,t) V UNCHANGED (terminatedAt, terminatingAt)
A UNCHANGED (svars)

ProOF: As action Learn(r,t) has the same post-conditions of Learn(r,t),
it is enough to show that the pre-conditions of the first imply the pre-
conditions of the latter. Since the reception of “Terminated” message for
transaction ¢ implies that it was sent and since it is only sent by action
CoordDecide if the transaction has terminated, the reception of such mes-

sage implies that the Outcome(vHist, t) # “Undefined”.

224 Log Service

2.1.2.4. Q.E.D.
2.1.3. Q.E.D.
2.2. TMActions = TMActions
2.2.1. AddRM = AddRM
Proor: Trivially true, since the their definitions are equal.
2.2.2. RequestTerm = RequestTerm
Proor: Trivially true, since the their definitions are equal.
2.2.3. UNCHANGED (rvars, evars, svars, msgs, ovars)
=> UNCHANGED (svars, rvars, evars)
Proor:Clearly true since either the left-hand side of the expression contains
all variables in the spec.
2.2.4. Q.E.D.
2.3. EnvActions = EnvActions
Proor: Trivially true, since their definitions are equal.
2.4. Q.E.D.
3. Q.E.D.

Bibliography

[A. M. Q. P Working Group, 2006] A. M. Q. P Working Group (2006). AMQP: Ad-
vanced message queuing, version 0.8. 120

[Abadi and Lamport, 1991] Abadi, M. and Lamport, L. (1991). The existence of
refinement mappings. Theoretical Computer Science, 82(2):253-284. 139, 150,
206, 220

[Aguilera et al., 1998] Aguilera, M. K., Chen, W.,, and Toueg, S. (1998). Failure
detection and consensus in the crash-recovery model. In Proc. of the 12th Inter-
national Symposium on Distributed Computing. 12, 17, 39, 40

[Aguilera et al., 2000] Aguilera, M. K., Delporte-Gallet, C., Fauconnier, H., and
Toueg, S. (2000). Thrifty generic broadcast. In Proceedings of the 14th Inter-
national Symposium on Distributed Computing (DISC), pages 268-282, Toledo,
Spain. Springer-Verlag. 42, 70

[Aguilera et al., 2001] Aguilera, M. K., Gallet, C. D., Fauconnier, H., and Toueg,
S. (2001). Stable leader election. In DISC '01: Proceedings of the 15th In-
ternational Conference on Distributed Computing, pages 108-122, London, UK.
Springer-Verlag. 32

[Aguilera and Toueg, 1998] Aguilera, M. K. and Toueg, S. (1998). Failure detection
and randomization: A hybrid approach to solve consensus. SIAM J. Comput.,
28(3):890-903. 40

[Alvisi et al., 2000] Alvisi, Malkhi, Pierce, Reiter, and Wright (2000). Dynamic
byzantine quorum systems. In International Conference on Dependable Systems
and Networks (IEEE Computer Society) (replacing both IEEE FTCS (after 29th) and
IFIP DCCA (after 7th)), volume 1. 119

[Ben-Or, 1983] Ben-Or, M. (1983). Another advantage of free choice (extended
abstract): Completely asynchronous agreement protocols. In PODC ’83: Proceed-

ings of the second annual ACM symposium on Principles of distributed computing,
pages 27-30, New York, NY, USA. ACM Press. 2, 10, 71

225

226 BIBLIOGRAPHY

[Bernstein et al., 1987] Bernstein, P, Hadzilacos, V., and Goodman, N. (1987). Con-
currency Control and Recovery in Database Systems. Addison-Wesley. 94, 112, 113

[Bracha and Toueg, 1983] Bracha, G. and Toueg, S. (1983). Resilient consensus
protocols. In PODC ’83: Proceedings of the second annual ACM symposium on
Principles of distributed computing, pages 12-26, New York, NY, USA. ACM. 10

[Burrows, 2006] Burrows, M. (2006). The chubby lock service for loosely-coupled
distributed systems. In USENIX'06: Proceedings of the 7th conference on USENIX
Symposium on Operating Systems Design and Implementation, pages 24-24,
Berkeley, CA, USA. USENIX Association. 32

[Camargos et al., 2006a] Camargos, L., Madeira, E. R. M., and Pedone, E (2006a).
Optimal and practical wab-based consensus algorithms. In Euro-Par 2006 Parallel
Processing, volume 4128 of Lecture Notes in Computer Science, pages 549-558,
Berlin / Heidelberg. Springer. vii, viii, 2, 11, 12, 13

[Camargos et al., 2006b] Camargos, L., Pedone, E, and Schmidt, R. (2006b). A
primary-backup protocol for in-memory database replication. In NCA ’06: Pro-
ceedings of the Fifth IEEE International Symposium on Network Computing and
Applications, pages 204-211, Washington, DC, USA. IEEE Computer Society. vii

[Camargos et al., 2007a] Camargos, L., Pedone, E, and Wieloch, M. (2007a).
Sprint: a middleware for high-performance transaction processing. In EuroSys
'07: Proceedings of the 2007 conference on EuroSys, pages 385-398, New York,
NY, USA. ACM Press. vii, 113

[Camargos et al., 2008a] Camargos, L., Schmidt, R., and Pedone, E (2008a). Mul-
ticoordinated agreement protocols for higher availabilty. In NCA '08: Proceedings
of the Seventh IEEE International Symposium on Network Computing and Applica-
tions, Washington, DC, USA. IEEE Computer Society. viii, 13

[Camargos et al., 2008b] Camargos, L., Wieloch, M., Pedone, E, and Madeira, E.
(2008b). A highly available log service for transaction termination. In Proceed-

ings of the seventh International Symposium on Parallel and Distributed Computing
(ISPDC 2008). vii, viii

[Camargos et al., 2007b] Camargos, L. J., Schmidt, R. M., and Pedone, E (2007b).
Multicoordinated paxos: Brief announcement. In PODC ’07: Proceedings of the

twenty-sixth annual ACM symposium on Principles of distributed computing, pages
316-317, New York, NY, USA. ACM Press. viii, 13

[Castro and Liskov, 1999] Castro, M. and Liskov, B. (1999). Practical byzantine
fault tolerance. In OSDI 99: Proceedings of the third symposium on Operating

BIBLIOGRAPHY 227

systems design and implementation, pages 173-186, Berkeley, CA, USA. USENIX
Association. 12, 119

[Chandra et al., 1996] Chandra, T. D., Hadzilacos, V,, and Toueg, S. (1996). The
weakest failure detector for solving consensus. Journal of the ACM, 43(4):685-
722. 2,11, 62, 102

[Chandra and Toueg, 1996] Chandra, T. D. and Toueg, S. (1996). Unreliable fail-
ure detectors for reliable distributed systems. Communications of the ACM,
43(2):225-267. 11, 12, 96

[Cowling et al., 2006] Cowling, J., Myers, D., Liskov, B., Rodrigues, R., and Shrira,
L. (2006). Hq replication: A hybrid quorum protocol for byzantine fault toler-
ance. In Proceedings of the Seventh Symposium on Operating Systems Design and
Implementations (OSDI), Seattle, Washington. 119

[Cristian and Fetzer, 1999] Cristian, E and Fetzer, C. (1999). The timed asyn-
chronous distributed system model. Parallel and Distributed Systems, IEEE Trans-
actions on, 10(6):642-657. 11

[Daniels et al., 1987] Daniels, D. S., Spector, A. Z., and Thompson, D. S. (1987).
Distributed logging for transaction processing. In Dayal, U. and Traiger, 1., edi-
tors, Proceedings of the ACM SIGMOD Annual Conference, pages 82-96, San Fran-
cisco, CA. ACM, ACM Press. 116

[Dolev et al., 1987] Dolev, D., Dwork, C., and Stockmeyer, L. (1987). On the mini-
mal synchronism needed for distributed consensus. Journal of the ACM (JACM),
34(1):77-97. 11, 39

[Dolev et al., 1997] Dolev, D., Friedman, R., Keidar, I., and Malkhi, D. (1997). Fail-
ure detectors in omission failure environments. In Symposium on Principles of
Distributed Computing, page 286. 39

[Dutta and Guerraoui, 2002] Dutta, P and Guerraoui, R. (2002). Fast indulgent
consensus with zero degradation. Lecture Notes in Computer Science, 2485. 12

[Dwork et al., 1988] Dwork, C., Lynch, N., and Stockmeyer, L. (1988). Consensus
in the presence of partial synchrony. J. ACM, 35(2):288-323. 11

[Fischer et al., 1985] Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985). Im-
possibility of distributed consensus with one faulty process. J. ACM, 32(2):374—
382. 2,10

[Gray, 1978] Gray, J. (1978). Notes on database op. systems. In Advanced Course:
Operating Systems, pages 393-481. 111

228 BIBLIOGRAPHY

[Gray and Lamport, 2006] Gray, J. and Lamport, L. (2006). Consensus on transac-
tion commit. ACM TODS, 31(1):133-160. 4, 94, 111, 112, 113, 116

[Guerraoui et al., 1996] Guerraoui, R., Larrea, M., and Schiper, A. (1996). Reduc-
ing the cost for non-blocking in atomic commitment. In ICDCS "96: Proceedings of
the 16th International Conference on Distributed Computing Systems (ICDCS 96),
page 692, Washington, DC, USA. IEEE Computer Society. 95, 111, 113, 116

[Hadzilacos and Toueg, 1993] Hadzilacos, V. and Toueg, S. (1993). Fault-tolerant
broadcasts and related problems, pages 97-145. ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, 2 edition. 41

[Hurfin et al., 1998] Hurfin, M., Mostefaoui, A., and Raynal, M. (1998). Consensus
in asynchronous systems where processes can crash and recover. In Proceedings
Seventeenth IEEE Symposium on Reliable Distributed Systems, IEEE Comput., pages
280-286, Soc, Los Alamitos, CA. 12, 39, 40

[Hurfin et al., 2002] Hurfin, M., Mostéfaoui, A., and Raynal, M. (2002). A ver-
satile family of consensus protocols based on chandra-toueg’s unreliable failure
detectors. IEEE Trans. Comput., 51(4):395-408. 12

[Hurfin and Raynal, 1999] Hurfin, M. and Raynal, M. (1999). A simple and fast
asynchronous consensus protocol based on a weak failure detector. Distrib. Com-
put., 12(4):209-223. 12

[Jiménez-Peris et al., 2001] Jiménez-Peris, R., Patino-Martinez, M., Alonso, G., and
Arevalo, S. (2001). A low-latency non-blocking commit service. Distributed Com-
puting Conference (DISC’01), pages 93-107. 95,112, 113

[Kooh and Haddad, 1999] Kooh, N. E and Haddad, S. (1999). Reaching agreement
in hierarchical groups. In Proceedings of the 12th International Conference on
Parallel and Distributed Computing Systems, Fort Lauderdale, USA. IASTED Press.
91

[Kotla et al., 2007] Kotla, R., Alvisi, L., Dahlin, M., Clement, A., and Wong, E.
(2007). Zyzzyva: speculative byzantine fault tolerance. In SOSP ’07: Proceed-
ings of twenty-first ACM SIGOPS symposium on Operating systems principles, pages
45-58, New York, NY, USA. ACM. 119

[Lamport, 1978] Lamport, L. (1978). Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558-565. 3

[Lamport, 1996] Lamport, L. (1996). Refinement in state-based formalisms. 206,
220

BIBLIOGRAPHY 229

[Lamport, 1998] Lamport, L. (1998). The part-time parliament. ACM Trans. Com-
put. Syst., 16(2):133-169. 2, 9, 12, 23, 27, 39, 71, 94, 111

[Lamport, 2001] Lamport, L. (2001). Paxos made simple. ACM SIGACT News (Dis-
tributed Computing Column), 32(4):18-25. 12, 23

[Lamport, 2002a] Lamport, L. (2002a). Specifying Systems: The TLA+ Language
and Tools for Hardware and Software Engineers. Addison-Wesley Professional. 6,
185, 194

[Lamport, 2002b] Lamport, L. (2002b). A summary of tla+. Internet. 185

[Lamport, 2004] Lamport, L. (2004). Generalized consensus and paxos. Technical
Report MSR-TR-2005-33, Microsoft Research. 3, 5, 42, 43, 54, 118, 121, 122,
123, 158, 160

[Lamport, 2006a] Lamport, L. (2006a). Fast paxos. Distributed Computing,
19(2):79-103. 12, 23, 28, 31, 32,57, 58, 62, 118

[Lamport, 2006b] Lamport, L. (2006b). Lower bounds for asynchronous consensus.
Distributed Computing, 19(2):104-125. 9, 13, 31, 40

[Lamport and Massa, 2004] Lamport, L. and Massa, M. (2004). Cheap paxos. In
DSN ’04: Proceedings of the 2004 International Conference on Dependable Systems
and Networks (DSN’04), Washington, DC, USA. IEEE Computer Society. 39, 59

[Lampson, 2001] Lampson, B. (2001). The abcd’s of paxos. In PODC ’01: Proceed-
ings of the twentieth annual ACM symposium on Principles of distributed comput-
ing, New York, NY, USA. ACM Press. 3, 12

[Lorch et al., 2006] Lorch, J. R., Adya, A., Bolosky, W. J., Chaiken, R., Douceur,
J. R., and Howell, J. (2006). The smart way to migrate replicated stateful ser-
vices. In EuroSys '06: Proceedings of the 2006 EuroSys conference, pages 103-115,
New York, NY, USA. ACM Press. 59

[Martin and Alvisi, 2006] Martin, J. P and Alvisi, L. (2006). Fast byzantine con-
sensus. Dependable and Secure Computing, IEEE Transactions on, 3(3):202-215.
12

[Mohan et al., 1985] Mohan, C., Strong, R., and Finkelstein, S. (1985). Method for
distributed transaction commit and recovery using byzantine agreement within
clusters of processors. SIGOPS Oper. Syst. Rev., 19(3):29-43. 116

230 BIBLIOGRAPHY

[Oki and Liskov, 1988] Oki, B. M. and Liskov, B. H. (1988). Viewstamped replica-
tion: A new primary copy method to support highlyavailable distributed systems.
In PODC ’88: Proceedings of the seventh annual ACM Symposium on Principles of
distributed computing, pages 8-17, New York, NY, USA. ACM Press. 39

[Oliveira et al., 1997] Oliveira, R., Guerraoui, R., and Schiper, A. (1997). Consen-
sus in the crash-recover model. Technical Report TR-97/239, EPFL — Départment
d’Informatique, Lausanne, Switzerland. 39

[Pedone et al., 2003] Pedone, E, Guerraoui, R., and Schiper, A. (2003). The
database state machine approach. Distrib. Parallel Databases, 14(1):71-98. 73

[Pedone and Schiper, 1999] Pedone, E and Schiper, A. (1999). Generic broadcast.
In Proceedings of the 13th International Symposium on Distributed Computing
(DISC’99, formerly WDAG). 41, 42, 70, 92

[Pedone and Schiper, 2002] Pedone, FE and Schiper, A. (2002). Handling message
semantics with generic broadcast protocols. Distributed Computing, 15(2):97-
107. 3, 5, 33, 41, 42, 64, 70, 118

[Pedone et al., 2002a] Pedone, E, Schiper, A., Urban, P, and Cavin, D. (2002a).
Solving agreement problems with weak ordering oracles. In EDCC-4: Proceedings
of the 4th European Dependable Computing Conference on Dependable Computing,
pages 44-61, London, UK. Springer-Verlag. 2, 10, 11, 39

[Pedone et al., 2002b] Pedone, E, Schiper, A., Urban, P, and Cavin, D. (2002b).
Weak ordering oracles for failure detection-free systems. In Proc. Int’'l Conf. on
Dependable Systems and Networks (DSN), supplemental volume. 2, 10, 14, 15, 39

[Rabin, 1983] Rabin, M. O. (1983). Randomized byzantine generals. In Proc. of the
24th Annu. IEEE Symp. on Foundations of Computer Science, pages 403-409. 2,
10, 71

[Schiper, 1997] Schiper, A. (1997). Early consensus in an asynchronous system
with a weak failure detector. Distrib. Comput., 10(3):149-157. 12

[Schmidt et al., 2007] Schmidt, R., Camargos, L., and Pedone, E (2007). On
collision-fast atomic broadcast. Technical report, EPFL. viii, 3, 75, 76, 77, 78,
79, 88, 91

[Silberschatz et al., 2001] Silberschatz, A., Korth, H. E, and Sudarshan, S. (2001).
Database Systems Concepts. McGraw-Hill Science/Engineering/Math, fourth edi-
tion. 96

BIBLIOGRAPHY 231

[Song et al., 2008] Song, Y. J., van Renesse, R., Schneider, E B., and Dolev, D.
(2008). The building blocks of consensus. In ICDCN, pages 54-72. 71

[Sousa et al., 2002] Sousa, A., Pereira, J., Moura, E, and Oliveira, R. (2002). Opti-
mistic total order in wide area networks. In Proceedings of the 21st IEEE Sympo-
sium on Reliable Distributed Systems, pages 190-199. IEEE CS. 91

[Stamos and Cristian, 1993] Stamos, J. W. and Cristian, E (1993). Coordinator log
transaction execution protocol. Distributed and Parallel Databases, 1(4):383-408.
115

[The FIX Protocol Organization, 2008] The FIX Protocol Organization (2008). Fix
protocol. Internet site. 120

[TPCC,] TPCC, T. B P C. http://www.tpc.org/. 114

[Van Renesse et al., 2003] Van Renesse, R., Birman, K. P, and Vogels, W. (2003).
Astrolabe: A robust and scalable technology for distributed system monitoring,
management, and data mining. ACM Trans. Comput. Syst., 21(2):164-206. 120

[Vicente and Rodrigues, 2002] Vicente, P and Rodrigues, L. (2002). An indulgent
uniform total order algorithm with optimistic delivery. In Proceedings of the
21st Symposium on Reliable Distributed Systems, pages 92-101, Osaka Univer-
sity, Suita, Japan. IEEE. 91

[Vinoski, 2006] Vinoski, S. (2006). Advanced message queuing protocol. IEEE
Internet Computing, 10(6):87-89. 120

[White et al., 2002] White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S.,
Newbold, M., Hibler, M., Barb, C., and Joglekar, A. (2002). An integrated ex-
perimental environment for distributed systems and networks. In Proc. of the
Fifth Symposium on Operating Systems Design and Implementation, OSDI0O2, pages
255-270, Boston, MA. USENIX Association. 113

[Zielinski, 2004] Zielinski, P (2004). Paxos at war. Technical Report UCAM-CL-TR-
593, University of Cambridge, Computer Laboratory. 12

[Zielinski, 2005] Zielinski, P (2005). Optimistic generic broadcast. In Proceedings
of the 19th International Symposium on Distributed Computing, pages 369-383,
Krakow, Poland. 42, 70

	Contents
	List of Figures
	List of Tables
	Introduction
	About Rounds, Consensus, and Agreement Problems
	Transaction Termination
	Contributions
	Algorithmic Notation
	System Model
	Thesis Outline

	Multicoordinated Consensus
	Consensus and the FLP Impossibility Result
	Randomization and Spontaneous Ordering
	Synchronism and Failure Detection
	Availability Issues of Leader Based Protocols

	WAB-Based Consensus
	Weak Atomic Broadcast
	B*-Consensus
	R*-Consensus
	Correctness and Liveness

	Multi-Coordinated Consensus
	Classic Paxos
	Fast Paxos
	Multi-Coordinated Rounds and Coord-Quorums
	Algorithm
	Correctness and Liveness

	Final Remarks and Related Work

	Multicoordinated Generalized Consensus and Generic Broadcast
	One Problem to Rule Them All
	Generalized Consensus
	C-Structs
	Problem Definition

	Lamport's Generalized Paxos
	Multicoordinated Paxos
	The Algorithm
	The ProvedSafe Function
	Availability and Load-Balancing with Multiple Coordinators
	Collisions
	Reducing disk writes
	Setting rounds and quorums
	Ensuring Liveness

	Solving Generic Broadcast with Multicoordinated Paxos
	Command Histories and Formal Definition
	A Simple Command History
	A Run of Generic Broadcast

	Final Remarks and Related Work

	Fast Agreement for Groups
	Agreement in Networks of Groups
	Collision-Fast Paxos
	Value Mapping Sets
	M-Consensus
	Collision-Fast Paxos

	Multicoordination and Collision-Fast Paxos
	Basic Algorithm
	Adding Intra-group Reconfiguration
	Correctness and Liveness

	Generalizing Collision-Fast Rounds
	Final Remarks and Related Work

	Log Service for Transaction Termination
	Log Service
	Problem statement
	The Log Service
	The Log Service Specification
	Termination and Recovery
	Correctness

	From the specification to implementations
	Coordinated Implementation
	Overview
	The Algorithm

	Uncoordinated Implementation
	Overview
	Algorithm

	Evaluation
	Analytical Evaluation
	Experimental Evaluation

	Final Remarks and Related Work

	Conclusion
	Contributions
	Future Work

	Multicoordinated Paxos
	Proof of Correctness
	Preliminaries
	Abstract Multicoordinated Paxos
	Distributed Abstract Multicoordinated Paxos
	Multicoordinated Paxos
	Collision Recovery
	Liveness

	TLA+ Specifications
	Helper Specifications
	Abstract Multicoordinated Paxos
	Distributed Abstract Multicoordinated Paxos
	Basic Multicoordinated Paxos
	Complete Multicoordinated Paxos

	Log Service
	Abstract Specification
	Constants
	Specification
	Correctness

	Coordinated Implementation
	Specification
	Implementation Proof

	Uncoordinated Implementation
	Specification
	Implementation Proof

	Bibliography

