
Indirect Robust Estimation of

the Short-term Interest

Rate Process

Veronika Czellar 1

Dept. of Econometrics, University of Geneva, Switzerland

G. Andrew Karolyi

Fisher College of Business, Ohio State University

Elvezio Ronchetti

Dept. of Econometrics, University of Geneva, Switzerland

September 23, 2006

Abstract

We propose Indirect Robust Generalized Method of Moments (IRGMM), a simulation-
based estimation methodology, to model short-term interest rate processes. The primary
advantage of IRGMM relative to classical estimators of the continuous-time short-rate
diffusion processes is that it corrects both the errors due to discretization and the errors
due to model misspecification. We apply this approach to monthly US risk free rates and
to various monthly Eurocurrency rates and provide extensive evidence of its predictive
performances in a variety of settings.

Keywords: GMM and RGMM estimators, indirect inference.

JEL Classifications: G10, G12, C10, C22, C15, C53.

1Much of this work was completed while V. Czellar was visiting the Departement of
Finance of the Fisher College of Business at Ohio State University whose hospitality is
gratefully acknowleged. She would like to thank also Lombard Odier Darier Hentsch&Cie
(Geneva) for the financial support of this visit. Also helpful comments by R. Stulz, J. De-
temple, F. Trojani, seminar participants of BusFin 923 at the Fisher College of Business
(Ohio State University), and participants at research seminars at Ohio State University, at
University of Geneva, at University of Manchester and at Boston University are gratefully
acknowledged. G. A. Karolyi thanks the Dice Center for Research in Financial Economics
for financial support.

1



1. Introduction

Understanding the dynamics of the short-term interest rate is important for building
models of the term structure of interest rates, which, in turn, are used for pricing inter-
est rate derivatives and instruments with embedded options such as callable bonds and
mortgage-backed securities. Although there has been extensive analysis of the time series
of short-term interest rates, some basic modeling issues remain unresolved. One issue stems
from the difficulties associated with the statistical analysis of continuous-time processes.
For example, in complex statistical models, like diffusion models described by stochastic
differential equations (SDE) of the form,

dyt = η(yt, θ)dt + σ(yt, θ)dWt , (1)

where θ ∈ Rp, η(·) and σ(·) are the drift and the volatility, respectively, and Wt a Wiener
process, it is often difficult or impossible to carry out standard likelihood based estimation
and inference. Such SDEs play an important role when modeling the short-term interest
rate; see, for example, Vasicek (1977), Dothan (1978), Brennan and Schwartz (1977), Cox,
Ingersoll and Ross (1981, 1985), Chan, Karolyi, Longstaff and Sanders (CKLS, 1992),
Brenner, Harjes and Kroner (1996), Ahn and Gao (1999), among others.

A great deal of progress has been made recently in developing efficient tools for estimat-
ing and testing continuous-time models of the short-rate process. Important contributions
include, for instance, the Efficient Method of Moments (Gallant and Tauchen, 1996; An-
dersen and Lund, 1997), weighted least squares estimation (Chapman and Pearson, 1999),
simulated maximum likelihood estimation (Durham and Gallant, 2002; Durham, 2003),
Gibbs sampling-based Markov Chain Monte Carlo algorithms (Elerian, Chib and Shep-
hard, 2001; Eraker, 2001), and retrospective sampling-based Monte Carlo methods (Beskos,
Papaspiliopoulos, Roberts and Fearnhead, 2006).

It is well known that estimators based on a discretized version of (1) are biased, see
for instance Gouriéroux, Monfort and Renault (1993). To tackle the problem arising from
discretization, several approaches have been proposed. Among others, non-parametric
techniques (Aı̈t-Sahalia, 1996; Stanton, 1997; Pritsker, 1998; Hong and Li, 2005; Johannes,
2004), pseudo-likelihood estimation (Aı̈t-Sahalia, 1999; Aı̈t-Sahalia, 2002) and indirect
techniques (Broze, Scaillet and Zaköıan, 1995) have been used to estimate the short-term
interest rate process. An additional problem that arises when estimating the short rate
process is the possible misspecification of the model which can lead to biased estimators
and misleading test results. The theory of robust statistics can be used to mitigate this
problem. Specifically, Dell’Aquila, Ronchetti and Trojani (2003) used the Robust General-
ized Method of Moments (RGMM) technique, developed by Ronchetti and Trojani (2001),
to estimate discrete-time interest rate processes.

Typically the estimation of (1) is performed by means of an auxiliary model which is a
discretized version of the SDE. The resulting indirect estimation (Gouriéroux et al., 1993)
is based on the following idea. Given a sample of observations {yt}t=1,...,n assumed to be
generated from a probability model Fθ, θ ∈ Rp, define an auxiliary model F̃µ where the
parameter µ ∈ Rr is easier to estimate than θ. For instance, Fθ could be the diffusion
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model (1) or a fine discretization of (1) and F̃µ a crude discretization of (1). The main
steps of indirect estimation are:

(i) an auxiliary estimator µ̃ is calculated with the original sample;

(ii) pseudo-observations are simulated from the model Fθ generating S
samples of pseudo-data

{y1
t (θ)}t=1,...,n, . . . , {yS

t (θ)}t=1,...,n ;

(iii) an auxiliary estimator µ̃S(θ) is calculated with the simulated pseudo-
observations;

(iv) the indirect estimator θ̂ of θ is obtained as that which minimizes the
distance between the auxiliary estimators µ̃ and µ̃S(θ):

θ̂ = arg min
θ

(µ̃ − µ̃S(θ))T Ω (µ̃ − µ̃S(θ)) . (2)

Gouriéroux and Monfort (1996) proved that, under certain regularity conditions, the
indirect estimator θ̂ is consistent for θ and asymptotically normal. Moreover, if the bias of
the auxiliary estimator is of order O(1), then indirect estimation reduces this bias. That
is, the bias of θ̂ is of order O(n−1).

This procedure relies on the assumption that the underlying model Fθ is exact, or, in
other words, that it has generated the data. If the underlying model Fθ is misspecified
and the real data is generated from a perturbed model such as (1− ε)Fθ + εG, where G is
an unknown distribution and 0 ≤ ε < 1, Genton and Ronchetti (2003) showed that even
the indirect estimators are biased. To eliminate this bias, they developed robust indirect
estimation which is based on a robust estimator of the auxiliary parameter. They proved
that, if the auxiliary estimator is a consistent and robust estimator of the parameter, then
the associated indirect estimator is also robust. In the same spirit, Ortelli and Trojani
(2005) extended these results to the broader setup of the efficient method of moments
and developed robust techniques in this case by providing efficient algorithms for their
computation.

In this paper, we combine these results and apply them to a statistical analysis of
models described by (1). In particular, we define the indirect robust Generalized Method
of Moments (IRGMM), a simulation-based estimation of SDEs which reduces both the
bias due to discretization and to contamination, and apply it to monthly US risk free and
to various monthly Eurocurrency interest rate series. We also investigate three different
diffusion models for short-term interest rates proposed in the finance literature (CKLS,
1992; Ahn and Gao, 1999; Chapman and Pearson, 2000) to explore the sensitivity of our
findings to different model specifications. We compare empirical results obtained with
GMM, RGMM and IRGMM in both within- and out-of-sample predictive tests. For many
of the cases, we obtain superior predictive performances using the IRGMM estimation
technique.

The paper is organized as follows. In Section 2, we introduce the IRGMM technique
to estimate short-term interest rate processes and explain the advantages of this procedure
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with respect to classical estimation methods. Section 3 presents the results of IRGMM
estimation of monthly US one-month risk free rates with three different diffusion models and
three different techniques: GMM, RGMM and IRGMM. We compare their performances
by means of within-sample goodness-of-fit tests. In Section 4, we compare the techniques
and models presented in Section 3 using various monthly Eurocurrency rates. We compute
out-of-sample goodness-of-fit tests and evaluate the predictive performance of the IRGMM
estimation-based forecasts in the period from 2000-2004. Finally, Section 5 concludes the
article with some suggestions for further work.

2. IRGMM analysis of the short-term interest rate process

2.1 Robust indirect inference

A necessary condition for the consistency of an indirect estimator defined in (2) is that
the original data {yt} and the pseudo-data are generated from the same probability model,
see Gouriéroux et al. (1993). In reality, the presence of large outliers and high kurtosis
in the increments of interest rate data shows that a diffusion model with standard normal
increments may be misspecified. As an illustration, let us consider the diffusion model
(1) where the increments come from an ε-neighborhood of a standard normal distribution
defined by:

Wt − Wt−1 = ǫt ∼ Gε = (1 − ε)N (0, 1) + εG , (3)

with 0 ≤ ε < 1 and G an unknown distribution.

observation
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Figure 2.1: Simulated data from a GBM diffusion model with 5% contamination.
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As an illustrative example, Figure 2.1 presents simulated data of sample size n = 300
generated from a contaminated geometric Brownian motion with drift 2:

dyt = βytdt + σytdWt , (4)

where the increments follow Gε = (1 − ε)N (0, 1) + ε t3 with ε = 0.05, β = 0.1, σ = 0.5
and t3 a t-distribution with 3 degrees of freedom. Figure 2.1 shows that a contaminated
diffusion model can generate large outliers in the data. The kurtosis of yt − yt−1 for the
plotted sample is approximately 10.50, which is much higher than 3, the kurtosis under the
normal model.

Our goal is to construct an indirect estimator of the diffusion model (1) which is robust
to misspecifications of the underlying stochastic structure of the model described in (3).
Genton and Ronchetti (2003) have shown that indirect estimators are robust if the auxiliary
estimator is a robust estimator of the parameter of the auxiliary model. In our case, the
auxiliary model F̃µ is a discretization of the diffusion model (1):

yt = yt−1 + η(yt−1, µ) + σ(yt−1, µ)ǫt , (5)

where {ǫt}t=1,...,n are independent, identically-distributed standard normal variables. Here-
after we will refer to equation (5) as the crude discretization. In order to use Genton and
Ronchetti’s result to construct a robust indirect estimator of the parameter θ of the dif-
fusion model, we need a robust estimator of the parameter µ. The robust version of the
GMM estimator (see Ronchetti and Trojani, 2001) is a GMM estimator where the clas-
sical H-dimensional orthogonality condition h is replaced by a truncated orthogonality
condition:

hA,τ
c (yt, yt−1, µ) = A[h(yt, yt−1, µ) − τ ]wc(yt, yt−1, µ) , (6)

where c >
√

H is a tuning constant and wc(yt, yt−1, µ) = min
(

1, c
‖A[h(yt,yt−1,µ)−τ ]‖

)

is a

weight assigned to yt which is smaller than 1 when ‖A[h(yt, yt−1, µ) − τ ]‖ > c. The non-
singular matrix A ∈ RH × RH and the vector τ ∈ RH are determined by the implicit
equations

Eµ0h
A,τ
c = 0 , (7)

1

n

n
∑

t=1

hA,τ
c (hA,τ

c )T = I . (8)

where for simplicity hA,τ
c = hA,τ

c (yt, yt−1, µ(F̃µ0)). An iterative algorithm for the computa-
tion of an RGMM estimator is defined in Ronchetti and Trojani (2001, p.47).

Denote by µ̃ the robust GMM (RGMM) estimator associated with the truncated or-
thogonality function (6). By construction, the RGMM estimator is defined by:

µ̃ = arg min
µ

g({yt}, µ) , (9)

g({yt}, µ) =
1

n

n
∑

t=1

hA,τ
c (yt, yt−1, µ)T 1

n

n
∑

t=1

hA,τ
c (yt, yt−1, µ) . (10)

2This case has an ”exact discretization”: log( yt

yt−1

) = β − σ2

2
+ σǫt with ǫt ∼ Gε.
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We define the indirect robust GMM (IRGMM) estimator as an indirect estimator com-
puted with an auxiliary RGMM estimator. In Section 2.2 we present an algorithm to
compute the IRGMM estimator.

2.2 The IRGMM technique

We define the IRGMM estimator θ̂ according to the following steps:

1) Compute the constant matrix A, vector τ , and the RGMM estimator
µ̃ defined in (7)-(10) using the real data {yt}t=0,1,...,n.

2) Simulate pseudo-observations from a fine discretization of (1) by di-
viding the time interval ∆t = 1 into m = 1/δ subintervals of length δ.
The Euler approximation corresponding to the time interval δ is the
process {ykδ}k=0,1,...,mn defined by

y(k+1)δ = ykδ + δη(ykδ, θ) +
√

δσ(ykδ, θ)ǫk , (11)

where ǫk is a standard normal variable. Selecting data at times kδ ∈ N,

obtain pseudo-data {y(s)
t (θ)}t=0,1,...,n . Simulate S pseudo-data sets

from this model:

{ys
t (θ)}t=0,1,...,n, s = 1, . . . , S, S ≥ 1 . (12)

3) For each s, calculate the function g
(

{ys
t (θ), µ

)

defined in (10) using A
and τ obtained in 1) and the auxiliary estimator for the pseudo-data:

µ̃S(θ) = arg min
µ

∑

s

g
(

{ys
t (θ)}, µ

)

.

4) The IRGMM estimator θ̂ is that which minimizes the distance between
the auxiliary estimators µ̃ and µ̃S(θ):

θ̂ = arg min
θ

(µ̃ − µ̃S(θ))T Ω(µ̃ − µ̃S(θ)) , (13)

where Ω is a positive definite symmetric matrix, for instance, the in-
verse of the asymptotic covariance matrix of the auxiliary estimator.

Notice that the computational complexity of this algorithm can be reduced by using
techniques developed in Ortelli and Trojani (2005). The IRGMM estimation procedure is
summarized in Figure 2.2. Since the RGMM estimator is a robust estimator of the auxiliary
parameter µ, the IRGMM is a consistent and robust estimator of the diffusion parameter θ
(for consistency of indirect estimators see Gouriéroux et al., 1993; for robustness of indirect
estimators see Genton and Ronchetti, 2003). The IRGMM estimator corrects both the
errors due to discretization and the errors due to contamination of the underlying diffusion
model.
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Original data

{yt}t=0,...,n

Pseudo-data

{ys
t (θ)}s=1,...,S

t=0,...,n

g
(

{yt}, µ
) {

g
(

{ys
t (θ)}, µ

) }

s=1...S

Computation of the RGMM estimators
using the model with crude discretization (5)

µ̃ = arg min
µ

g({yt}, µ) µ̃S(θ) = arg min
µ

∑

s

g
(

{ys
t (θ)}, µ

)

θ̂ = arg min
θ

(µ̃ − µ̃S(θ))T Ω(µ̃ − µ̃S(θ)) θ

Generation
of

pseudo-data
from

the model with
fine

discretization
(11)

Figure 2.2 Construction of the IRGMM estimator θ̂

2.3 The choice of the parameters S and δ

To calibrate our procedure, we generate data of sample size n = 100 from the exact
discretization of (4) with β = 0.1, σ = 0.5 and standard normal increments. We computed
indirect estimators with auxiliary maximum likelihood estimators of the crude discretization
of (4) 3. In Figures 2.3-2.4 we plot the indirect parameter estimates of β and σ obtained
with S = 10, 100, 1000 pseudo-data sets and with increasing values of 1/δ. The plots
show that there is no significant gain in stability of the indirect estimator computed with
S = 1000 compared to the one computed with S = 100 if we take into account the fact
that computation time is increasing linearly with S.

Figure 2.4 shows that the indirect estimator settles down for 1/δ ≥ 10, so a choice of

3The crude discretization of (4) is

yt = yt−1 + βyt−1 + σyt−1ǫt

and the maximum likelihood estimators for β and σ2 are

β̃ = r − 1 , σ̃2 =
1

n

n
∑

t=1

(rt − r)2

with rt = yt/yt−1 and r = 1/n
∑n

t=1 rt.
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δ ≤ 1/10 is necessary. In the next section, we estimate monthly rates and in this case it
is natural to choose δ = 1/22 for the simulation of daily rates (given there are about 22
trading days per month). By around 1/δ = 22 for the case with S = 100 replications,
Figures 2.3-2.4 indicate reasonable convergence is reached for both parameters of interest.

Figures 2.3-2.4 Indirect estimators of β and σ for S = 10 (boxes), for S = 100
(diamonds) and for S = 1000 (curve).

3. Model Estimation

3.1 The data

We consider one month risk free rates from the Monthly CRSP Fama Risk Free Rates
File covering the period from June 30,1964 to December 31,2004, which is an extension of
the dataset used by Chan et al. (1992). The data is plotted in Figure 3.1 and Table 3.1
presents the means, standard deviations, skewness, kurtosis and autocorrelations of the
monthly data.

Data N Mean StDev Sk Ku ρ1 ρ2 ρ3 ρ4 ρ5

yt 487 0.05667 0.02682 1.00730 1.78865 0.9652 0.9300 0.8993 0.8757 0.8558

∆yt 486 −0.00003 0.00679 −1.42971 14.79603 0.0082 −0.0758 −0.1133 −0.0594 −0.0139

Table 3.1: One month risk free rates statistics.
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Figure 3.1: One month risk free rates from June 1964 to December 2004.

3.2 The models

Suppose the data is generated from a diffusion model (1) where Wt is a Wiener process
defined on monthly time intervals. Consider the following diffusion model:

dyt =
(

β0 + β1yt + β2y
2
t +

β3

yt

)

dt + σyγ
t dWt . (14)

This model has been investigated using nonparametric techniques by Aı̈t-Sahalia (1996),
using maximum likelihood by Aı̈t-Sahalia (1999) and using GMM by Chapman and Pear-
son (2000). We also consider two alternative nested versions of (14): the CKLS model
(Chan et al., 1992) and that of Ahn and Gao (1999). The restrictions for these alternative
models are listed in Table 3.2.

β0 β1 β2 β3 σ γ

CP − − − − − −

CKLS − − 0 0 − −

AG − − − 0 − 1.5

Table 3.2: The models of Chapman and Pearson, CKLS and Ahn and Gao.
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We estimate our dataset using the three models and three different techniques: classical
GMM, RGMM and IRGMM, as defined in Section 2. For the estimation of the unrestricted
model by GMM, we consider Chapman and Pearson’s (2000) orthogonality conditions:

E[h(yt, yt−1, µ)] = 0 , h(yt, yt−1, µ) =

















νt

νtyt−1

νty
2
t−1

νty
−1
t−1

ν2
t − σ2y2γ

t−1

(ν2
t − σ2y2γ

t−1)yt−1

















, (15)

where νt = yt − yt−1 − β0 − β1yt−1 − β2y
2
t−1 − β3/yt−1. For the CKLS model, we use the

orthogonality conditions proposed by Chan et al., 1992):

h(yt, yt−1, µ) =









νt

νtyt−1

ν2
t − σ2y2γ

t−1

(ν2
t − σ2y2γ

t−1)yt−1









, (16)

where νt = yt − yt−1 − β1yt−1 − β0. Finally for the GMM estimation of the Ahn and Gao’s
model, we use the orthogonality conditions proposed by Ahn and Gao (1999):

h(yt, yt−1, µ) =

















νt

νtyt−1

νty
2
t−1

ν2
t − σ2y3

t−1

(ν2
t − σ2y3

t−1)yt−1

(ν2
t − σ2y3

t−1)y
3
t−1

















, (17)

where νt = yt − yt−1 − β0 − β1yt−1 − β2y
2
t−1. The orthogonality conditions defined in (15)-

(17) are also used for the determination of the truncated orthogonality conditions necessary
for the computation of the RGMM and IRGMM estimators.

For the RGMM and IRGMM estimation, we set the tuning constant c = 5.85 and the
consistency parameter τ = 0 4. In this case the RGMM estimator used here is defined only
by equations (8)-(10).

3.3 Estimation and goodness-of-fit tests

By construction, the RGMM estimation technique detects outliers and assigns weights
to them between 0 and 1, see equation (6). Figures 3.3-3.5 show the weights of the obser-
vations attributed by the RGMM for each of the three models.

4The consistency parameter can be dropped since indirect inference corrects the incon-
sistency of the auxiliary estimator.
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Figures 3.2-3.5: One month risk free rates from June 1964-December 2004 and their
RGMM weights using respectively the models of CKLS, Ahn and Gao and Chapman

and Pearson.

The weights assigned by the RGMM estimation procedure play an important role in
the computation of the IRGMM estimator since they decrease the influence of the outliers
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in the computation of the auxiliary estimator with real data (step 1) in Section 2.2.
Figure 3.3 shows that the RGMM estimation of the CKLS model detects outliers in

September 1974, during the period from January 1980 through August 1982, between
October-December 1987 and in September 2001. Figure 3.4 shows that in addition to the
outliers detected by the RGMM using CKLS model, the RGMM using Ahn and Gao’s
model detects additional periods with outliers. The most important among them are:
December 1968, May 1971, October 1984 and November 1998. Figure 3.5 presents even
more outliers detected by the RGMM computed using the model of Chapman and Pearson.
These additional outliers are detected in the period between June 2003 and October 2004.

Table 3.3 presents the parameter estimates obtained with the three models and each
model is estimated with the three different techniques (t-statistics of the parameter esti-
mates are in parentheses). The IRGMM estimation is performed using S = 100 pseudo-data
sets generated from the fine discretization (11) with δ = 1/22 5 The weighting matrix in
(13) is replaced by the inverse of the asymptotic matrix of the RGMM estimator, i.e.

Ω = E[∂h
A,τ
c

∂µ
]T E[∂h

A,τ
c

∂µ
]. We use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) variant of

the Davidon-Fletcher-Powell minimization algorithm for which we compute the gradient
using Ridders method of polynomial extrapolation. This minimization algorithm consists
of finding a local mimimum in the neighborhood of the initial point, for which we choose
the parameter estimates obtained with RGMM. Since each evaluation of the function in
(13) needs an optimization over S = 100 simulated datasets, an IRGMM estimation is
computationally intensive. All of our programs are executed in C and are available from
the first author.

In order to compare numerically the different estimation techniques we define the fol-
lowing goodness-of-fit measures:

̂RAMSE =
( 1

n

n
∑

t=1

1

S

S
∑

s=1

(y
(s)
t − yt)

2
) 1

2
, (18)

ÂMAD =
1

n

n
∑

t=1

median
s

(

|y(s)
t − median

l
(y

(l)
t )|

)

, (19)

ÂMB =
1

n

n
∑

t=1

(

|median
s

(y
(s)
t ) − yt|

)

, (20)

where {yt}t=1,...,n are the real observations and {y(s)
t }s=1,...,S

t=1,...,n are simulated data using pa-
rameter estimates and the corresponding model replacing ys

0 by the real observation y0.
For instance, for the GMM and the RGMM tests, the {ys

t } are generated from the crude
discretization (5), and for the IRGMM tests they are generated from (11) with δ = 1/22 6.

ÂMB measures the average median bias, ÂMAD, the variability and ̂RAMSE, the root

5To ensure that the pseudo-observations ykδ are between 0 and 1, we set the value of the
quadratic function in (13) to 108 in the points where the generated pseudo-observations
are not all in the interval ]0, 1[.

6For these measures only, (ykδ)
γ in (11) is replaced by |ykδ|

γ
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mean squared error of the simulated paths. Small ̂RAMSE values show the ability to
generate pseudo-data using the parameter estimates similar to the real data series.

In Table 3.3, the goodness-of-fit measures are computed using S = 100 pseudo-data
sets of the same sample size as the real dataset, n = 487 months. The smallest values of
goodness-of-fit measures for each model are underlined. The smallest value of ̂RAMSE for
all models and estimation techniques is marked by a star. Table 3.3 shows that for every
model the smallest values for ̂RAMSE are obtained using IRGMM parameter estimates,
but for different reasons for each model. For the CKLS model, the small ÂMAD obtained
using the IRGMM parameter estimates shows that the gain in the ̂RAMSE is due to the
small variability among the simulated paths. For the Ahn and Gao model, the gain using
IRGMM is particularly important, especially when compared to the classical GMM. The
gain is due in part to the small variability of the simulated paths generated using the
IRGMM parameter estimates and also to the fact that the GMM and RGMM parameter

estimates for β0 do not satisfy the condition requiring that the process {y(s)
t } stays away

from 0 (see Ahn and Gao, 1999, p.731). They can generate data with negative values

(though not statistically significant), which, in turn, explain the very large ̂RAMSE values.
The IRGMM parameter estimates for Ahn and Gao’s model are the only ones satisfying
β0 > 0. For the model of Chapman and Pearson, the performance of the IRGMM is neither
due to smaller variability (which obtains for GMM) nor to a smaller bias (which obtains
for RGMM) but a tradeoff between them.

β0 β1 β2 β3 σ γ RÂMSE ÂMAD ÂMB 10−3

CKLS : GMM 0.00172
(1.57)

−0.03084
(−1.34)

− − 0.40320
(1.54)

1.53091
(6.27)

42.96 9.08 19.02

RGMM 0.00075
(0.94)

−0.01031
(−0.59)

− − 0.14135
(2.78)

1.17706
(9.06)

79.92 15.75 19.36

IRGMM 0.00209
(0.48)

−0.04056
(−0.42)

− − 0.20679
(0.28)

1.30304
(1.07)

31.80∗ 8.43 19.72

AG : GMM −0.00163
(−1.44)

0.08612
(1.76)

−0.83573
(−1.84)

− 0.37165
(20.46)

1.5 5231.05 38.63 20.25

RGMM −0.00001
(−0.01)

0.00764
(0.25)

−0.05911
(−0.18)

− 0.33065
(25.19)

1.5 69.81 16.36 20.79

IRGMM 0.00034
(0.21)

−0.00993
(−0.18)

−0.04187
(−0.06)

− 0.33587
(3.72)

1.5 39.87 5.40 31.66

CP : GMM −0.00543
(−1.26)

0.16125
(1.42)

−1.21467
(−1.54)

0.00004
(1.25)

0.35025
(1.75)

1.47779
(6.90)

49.34 1.60 43.60

RGMM −0.00185
(−0.53)

0.06312
(0.64)

−0.50117
(−0.65)

0.00001
(0.55)

0.11987
(2.57)

1.12698
(8.12)

43.86 19.86 25.81

IRGMM −0.00083
(−0.11)

0.04475
(0.52)

−0.50026
(−0.16)

0.00000
(0.08)

0.19831
(0.10)

1.29488
(0.38)

41.48 16.07 27.38

Table 3.3: Parameter estimates for monthly Treasury Bill rates from 06/1964-12/2004.

We next consider two subperiods separately: 06/1964-12/1981 and 01/1982-12/2004.
This is an useful experiment to investigate the potential for robust GMM estimators since
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most of the outliers detected in Figures 3.3-3.5 are in the first subperiod. The left three
columns in Table 3.4 present the goodness-of-fit tests for the first subperiod 7. Here, the
conclusions are similar to those in Table 3.3. For each model, the IRGMM parameter
estimates generate the most accurate within-sample predictions of the interest rates. For
the CKLS and Chapman and Pearson models, the gain using IRGMM is mainly due to
small variability (ÂMAD) of the pseudo-data series. For the Ahn and Gao model the gain
is both due to a smaller variability and to the bias correction.

06/1964 − 12/1981 01/1982 − 12/2004

RÂMSE ÂMAD ÂMB RÂMSE ÂMAD ÂMB 10−3

CKLS : GMM 36.95 10.63 18.24 26.07 9.08 16.58

RGMM 55.67 16.52 18.17 31.55 14.46 13.68

IRGMM 33.64∗ 10.17 18.96 32.90 14.30 13.32

AG : GMM 8829.45 31.10 8755.64 7241.58 9.02 16.21

RGMM 4918.03 84.76 2718.39 23.78∗ 9.14 15.41

IRGMM 47.96 1.97 38.87 29.57 11.64 14.90

CP : GMM 38.64 19.92 16.96 27.17 13.50 15.59

RGMM 44.86 21.76 23.89 27.25 16.67 13.46

IRGMM 37.92 4.09 19.84 26.37 15.32 12.95

Table 3.4 Parameter estimates for one month risk free rates for the periods
06/1964-12/1981 and 01/1982-12/2004.

The right three columns in Table 3.4 present the goodness-of-fit measures for the sub-
period 01/1982-12/2004 where only a few outliers were detected. For the CKLS model,

the fact that the GMM has the smallest ̂RAMSE value due to the small variability in
the pseudo-data suggests that model misspecification and discretization errors were not
important in this case. By constrast, Ahn and Gao’s model seems to be more sensitive to
outliers since there is an important gain using RGMM relative to GMM. For the Chapman
and Pearson model, there is a small gain using IRGMM due to the correction of the dis-
cretization bias. In this subperiod, Ahn and Gao’s model with RGMM parameter estimates
fits best the data overall.

Tables 3.3-3.4 show that Ahn and Gao’s model is sensitive to model misspecification er-
ror while CKLS and Chapman and Pearson’s models are more sensitive to the discretization
error. Since the IRGMM technique corrects both errors, the IRGMM parameter estimates
often has the smallest ̂RAMSE values.

7The parameter estimates are available upon request from the authors.
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4. Out-of-Sample forecasts: 2000 - 2004

We consider now monthly US dollar Eurocurrency rates from January 1990 until De-
cember 2004. The rates represent 11 a.m. (GMT) quotes in London and are drawn from
Datastream International. The time series is plotted in Figure 4.1. We estimate the three
models presented in Section 3 with the three different GMM techniques described in Sec-
tion 2 using ten-year estimation horizons and we assess the out-of-sample performance
based on one-year-ahead forecasts (based on twelve monthly observations). We compute
forecast accuracy using the same goodness-of-fit measures as in the estimation above, but
by replacing {yt}t=1,...,12 by the out-of-sample observations of the eleventh year and by

simulating forecasts using the model parameter estimates and replacing y
(s)
0 by the last

observation from the ten-year period dataset yn, where n = 120.
Table 4.1 presents the ̂RAMSE goodness-of-fit 8 values obtained for the one-year-ahead

forecasts from five overlapping ten-year estimation horizons: 1990-1999, 1991-2000, 1992-
2001, 1993-2002 and 1994-2003. The smallest values for each model are underlined, and
the smallest values across the models are marked by stars. In most cases, the small forecast
errors for ̂RAMSE obtain for forecasts based on IRGMM estimated models. There is an
important gain by using IRGMM compared to GMM and RGMM, especially in the case of
models with non-linear drift. The introduction of the non-linear term β3/yt in the drift of
Chapman and Pearson’s model appears to be important for the forecasts of the years 2003
and 2004.

 

da
ta

0.
02

0.
04

0.
06

0.
08

01/30/1990 01/30/1994 01/30/1998 01/30/2002

Figure 4.1: Monthly US dollar Eurocurrency rate data from 01/1990 to 12/2004.

8The results for the other two metrics and the parameter estimates are available from
the authors upon request
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RÂMSE 10−3

2000 2001 2002 2003 2004

CKLS : GMM 11.34 26.19 9.33 4.12 7.94

RGMM 11.22 25.94 8.12 3.64 7.88

IRGMM 4.22 ∗ 24.36 1.18 ∗ 3.27 6.63

AG : GMM 10.37 23.90 559.95 4.99 9.89

RGMM 10.55 23.87 ∗ 107.42 2.35 14.30

IRGMM 11.86 24.01 5.41 2.73 8.65

CP : GMM 11.13 24.77 615.24 4.43 4.97 ∗

RGMM 11.16 25.21 186.86 2.73 5.16

IRGMM 9.41 24.69 43.72 2.19 ∗ 5.22

Table 4.1 Goodness-of-fit tests of the forecast of US dollar Eurocurrency rates for the
years 2000-2004.

Next, we turn to out-of-sample forecasts of the monthly Eurocurrency rates for the UK
and Switzerland. These data are also based on 11 a.m. (GMT) quotes in London and are
drawn from Datastream International.
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Figure 4.2: Monthly UK Sterling Eurocurrency rate data from 01/1990 to 12/2004.

16



RÂMSE 10−3

2000 2001 2002 2003 2004

CKLS : GMM 6.55 11.92 6.55 6.03 8.39

RGMM 6.68 11.83 5.76 5.64 8.52

IRGMM 6.90 11.41 6.49 6.02 7.62

AG : GMM 4.07 9.93 ∗ 6.00 2.34 7.04

RGMM 3.72 ∗ 11.06 8.47 1.10 ∗ 6.89

IRGMM 5.33 11.63 3.93 ∗ 1.64 6.24

CP : GMM 5.32 11.15 607.97 5.47 7.70

RGMM 5.13 10.62 4953886.00 4.71 7.72

IRGMM 5.04 10.91 23.91 1.51 3.75 ∗

Table 4.2 Goodness-of-fit tests of the forecasts of UK Sterling Eurocurrency rates for the
years 2000-2004.
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Figure 4.3: Monthly Swiss Franc Eurocurrency rate data from 01/1990 to 12/2004.
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RÂMSE 10−3

2000 2001 2002 2003 2004

CKLS : GMM 15.96 9.48 9.55 10.73 6.85

RGMM 15.93 9.20 9.89 11.25 7.38

IRGMM 12.61 ∗ 10.64 8.79 4.13 11.89

AG : GMM 16.76 4.47 ∗ 6.36 4.85 4.75

RGMM 17.71 4.47 5.36 1.11 ∗ 3.90

IRGMM 16.08 4.70 5.23 ∗ 1.17 2.68 ∗

CP : GMM 15.40 8.60 7.66 38.50 1242.80

RGMM 15.44 8.40 8.02 18.20 11.51

IRGMM 15.24 10.35 9.18 12.68 18.03

Table 4.3 Goodness-of-fit tests of the forecasts of Swiss Franc Eurocurrency rates for the
years 2000-2004.

Figures 4.2 and 4.3 plot the Eurocurrency rates for the UK Sterling and Swiss Franc
from January 1990 until December 2004. Tables 4.2 and 4.3 present the out-of-sample
forecasts of the years 2000-2004 for the UK Sterling and Swiss Franc. For both countries,
the comparison across models shows that the model of Ahn and Gao best fits the data. In
most of the cases, the IRGMM yielded the more accurate forecasts, followed by RGMM
and occasionally GMM. In the few cases when the GMM forecasts performed best, the gain
compared to the other estimation techniques is not significant. On the other hand, the gain
using IRGMM and sometimes RGMM compared to GMM can be substantial, especially in
the models with nonlinear drift. Consider, for instance, the years 2003 and 2004 for AG and
CP for the Swiss Franc rates. Finally, the gain using IRGMM can be even more important
when compared to RGMM. Consider, for instance, the year 2002 for UK Sterling rates.

5. Conclusion

In this paper we have proposed an application of the indirect robust GMM (IRGMM)
simulation-based estimation technique for models of short-term interest rates. We presented
an empirical comparison of three estimation techniques (GMM, RGMM and IRGMM) for
three different interest-rate diffusion models that have received attention in the finance
literature. We evaluated the within-sample performance of these techniques for US interest
rates between 1964 and 2004. We then compared the out-of-sample predictive power of the
three techniques on monthly Eurocurrency rates for the US dollar, UK Sterling and Swiss
Franc. We find that the improvement in goodness-of-fit provided by IRGMM estimation
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tends to occur most consistently for those models with more complex specifications, such
as those with non-linear drift.

A possible future research direction would be to go beyond single factor models and to
investigate the performance of IRGMM in more complex diffusion models.
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