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Summary. Variable selection is an essential part of any statistical analysis

and yet has been somewhat neglected in the context of longitudinal data

analysis. In this paper we propose a generalized version of Mallows’s Cp

(GCp) suitable for use with both parametric and nonparametric models. GCp

provides an estimate of a measure of model’s adequacy for prediction. We

examine its performance with popular marginal longitudinal models (fitted

using GEE) and contrast results with what is typically done in practice:

variable selection based on Wald-type or score-type tests. An application to

real data further demonstrates the merits of our approach while at the same

time emphasizing some important robust features inherent to GCp.

Key words: Cp; Generalized estimating equations (GEE); Prediction er-

ror; Robustness; Variable selection.
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1. INTRODUCTION

Variable (or model) selection is an essential part of any statistical analysis.

Although it is often perceived as an extensive search for a single best model,

it should be viewed as a technique which facilitates the identification of a

few good models. After all, in many contexts it may not be appropriate to

choose a single model. Moreover, one can often achieve better prediction

results by aggregating a collection of good models in the spirit of bagging; cf.

Breiman (1996). This implies that variable selection criteria which allow di-

rect comparisons of models should be preferred to stepwise procedures based

on significant testing. Several such criteria exist, including AIC, Schwartz,

BIC, and Cp; for an overview see e.g. McQuarrie and Tsai (1998) and Burn-

ham and Anderson (2002). In this paper we focus on such a variable selection

technique. It is an extension of Mallows’s Cp (Mallows, 1973) and it requires

only the data and a procedure from which predicted values can be obtained.

The technique does not require a parametric model and can be applied to

many different types of models, including those in which the classical as-

sumptions (e.g. independence of variables, normal distribution) do not hold

as for instance with binary data (e.g. a subject having a disease or not at a

particular point in time) taken over time on the same subject.

We focus on Marginal Longitudinal Generalized Linear Models and de-

velop our variable selection technique for these models. Generalized Linear

Models (GLM, McCullagh and Nelder, 1989) and Generalized Estimating

Equations (GEE, Liang and Zeger, 1986) are very popular statistical meth-

ods which allow us to model a variety of data and properly address the type of

situations described above. GLM are a generalization of the regression model

for continuous and discrete responses and Marginal Models are extensions of
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GLM for correlated data. GEE enable us to fit Marginal Models and are often

used for modeling longitudinal data that commonly arise for instance in med-

ical studies and economics. While there have been many novel approaches to

analyzing such data, little attention has been paid to the need for appropriate

variable selection. In the latest edition of the Analysis of Longitudinal Data

(Diggle et al., 2002) a discussion of variable selection techniques has been

somewhat neglected, with the exception of a few examples suggesting to the

reader, that, in the case of GEE, one can test the significance of covariates

using Wald-type test (z-statistics). A notable exception is the recent work

by Pan (2001), who developed an Akaike-like criterion for GEE, but with the

assumption of working independence. This restriction is not needed in our

approach. Horton and Lipsitz (1999) concluded that GEE are well-supported

by several software packages with hypothesis testing being particularly well-

implemented in some of them. However, it appears that variable selection is

restricted to either likelihood ratio or Wald-type tests.

The use of GCp here for purposes of model selection avoids a stepwise

procedure and is based on a measure of predictive error rather than on sig-

nificance testing.

The paper is organized as follows. In Section 2, we develop a general

criterion for prediction and its estimated version which leads to a general

and robust Cp statistic. We then derive explicitly this statistic for paramet-

ric longitudinal models. In Section 3 we present the results of a simulation

study that contrasts our proposal with stepwise procedures and significance

testing. Results are examined both in the absence and presence of misspeci-

fication of the model. This seems particularly important when investigating

tools like the GEE that are used in medical studies where 5% of outlying

observations seems to be quite common; cf. Hampel et al. (1986), p. 27. The
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results show the favorable performance of the new technique in identifying

good models. In Section 4 we use our GCp procedure on real data from a

prospective longitudinal study of the process of laryngoscopic endotracheal

intubation to identify those features of the process that are most predictive of

successful completion. We use a logistic longitudinal model with 9 covariates

on 19 subjects performing between 18 and 33 intubations each. Robust and

diagnostic features of our approach are further demonstrated. Conclusions

and directions for future research are provided in Section 5.

2. DERIVATION OF GCp

2.1 General Cp Procedure for Model Selection

We begin by considering the general setting in which we have only obser-

vations yi, i = 1, · · · , K, and a model, either parametric or nonparametric in

form, from which we can obtain predicted values ŷi, i = 1, · · · , K. We define

the rescaled weighted predictive squared error

ΓP =
K∑

i=1

E
{
w2

i

(yi − ŷi

σv
1/2
i

)
·
( ŷi − Eyi

σv
1/2
i

)2}
,

where ŷi is the fitted value for submodel P and Eyi and V (yi) = σ2vi are the

expected value and variance of yi. The weight function wi(·) may be chosen

so as to achieve a number of different objectives including heteroscedasticity

or robustness. If we define the weighted sum of squared residuals by WSR =
∑K

i=1 w
2
i (ri)r

2
i , where ri = yi−ŷi

σv
1/2

i

, and let δi = ŷi−Eyi

σv
1/2

i

, it is easy to show

that ΓP = E(WSR)−
∑K

i=1E{w
2
i (ri)ε

2
i }+ 2

∑K
i=1E{w

2
i (ri)εiδi}, where εi =

yi−Eyi

σv
1/2

i

. This suggests the following generalized version of Mallows’s Cp:

GCp = WSR−
K∑

i=1

E{w2
i (ri)ε

2
i } + 2

K∑

i=1

E{w2
i (ri)εiδi}. (1)
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The latter two terms comprise the correction term necessary in order to

make WSR unbiased for ΓP . In the selection procedure, V (yi) = σ2vi will be

replaced by an “external” estimate typically computed under the full model.

It is held fixed while calculating the GCp of each submodel. In a situation

where a “full model” is not available or cannot be fitted, one can select an

available large submodel from which to obtain a variance estimate. Notice

that for GEE with a logistic regression marginal model, σ2 = 1. As previously

mentioned, the weights wi(·) may address heteroscedasticity, robustness or

simply be identically one in which case (1) becomes a classical yet generalized

version of Mallows’s Cp. In the case of robustness, the weights in (1) are

different for each model, because an observation can be outlying with respect

to one model and have full weight in another. We may select a weighting

scheme that has the effect of downweighting the outlying observations with

respect to model P and limiting their influence on ΓP and, therefore, on

the model selection procedure. This would not penalize models which do

not fit a few outlying observations; cf. Ronchetti and Staudte (1994) in the

context of linear regression. A Taylor series expansion of the weights (details

are provided in Appendix A) allows us to write the final form of our GCp

statistic as follows:

GCp = WSR−
K∑

i=1

E{w2
i (εi)ε

2
i } + 2

K∑

i=1

E[
{
wi(εi)w

′

i(εi)ε
2
i + w2

i (εi)εi
}
δi]

−

K∑

i=1

E[
{
wi(εi)w

′′

i (εi)ε
2
i + (w′

i(εi))
2ε2i + 4wi(εi)w

′

i(εi)εi
}
δ2
i ]. (2)

To make the definition (2) operational we must be able to compute the lat-

ter three terms (comprising the correction). Approximations for these terms

can be derived and will depend on the specifics of the model under consid-

eration. In Section 2.2 we compute these terms for longitudinal marginal

models.
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Models with small values of GCp will be preferred to others. At this point,

the decision of how to proceed will depend on the application at hand. For

instance, we may wish to obtain predictions for a few good models with small

GCp and then average them in order to draw final conclusions. The weights

themselves may also prove very insightful. In the event that they are chosen

to address robustness, they can routinely identify outlying observations; cf.

Section 4.

2.2 Computation of GCp for a Marginal Longitudinal Model

We now consider a longitudinal data analysis setting, where Yit is the

discrete or continuous outcome for subject i at time t, for i = 1, · · · , K and

t = 1, · · · , ni. For each outcome Yit, we also measure a set of covariates

xit. We write Yi = (Yi1, · · · , Yini
)T for the ni × 1 vector of responses, and

Xi = (xi1 · · · xini
)T for the ni×pmatrix of covariates of subject i. We suppose

that Corr(Yi) = A−1
i V ar(Yi)A

−1
i , with Ai = diag(v1/2(µi1), · · · , v

1/2(µini
)),

and that the subjects (indexed by i) are independent. We model the marginal

mean E(Yit) = µit, and assume that g(µit) = xT
itβ for a known link function

g, and that V (Yit) = σ2v(µit). For short, we will write vit instead of v(µit).

An M-estimator β̂p for model P with p parameters is the solution of the

estimating equations proposed by Cantoni (2004):

K∑

i=1

DT
i ΓT

i V
−1
i (Ψi − ci) = 0, (3)

where Di = Di(Xi, β) = ∂µi/∂β is a ni × p matrix, and Vi = Vi(µi, α) =

AiRi(α)Ai is a ni × ni matrix. Ri(α), for an s-parameter α, is said to be

the working correlation matrix, as opposed to the “true” correlation matrix

Corr(Yi) = A−1
i V ar(Yi)A

−1
i . Moreover, Ψi = Wi(Yi − µi) and ci = E(Ψi),

where Wi = Wi(Xi, yi, µi) is a diagonal ni × ni weight matrix containing

6



weights wit for t = 1, · · · , ni. These weights may be different to those con-

tained in the definition of our GCp statistic and can be chosen so as to

address a number of different objectives, robustness being one example in

which case we refer to Cantoni and Ronchetti (2001) and Cantoni (2004)

for a detailed discussion on the choice of weights. Finally, Γi = E(Ψ̃i − c̃i)

with Ψ̃i = ∂Ψi/∂µi and c̃i = ∂ci/∂µi. Note that the classical GEE equations

(Liang and Zeger, 1986) are obtained with Wi equal to the identity matrix.

Note also that the estimating equation in (3) is a slightly modified version

of that in Preisser and Qaqish (1999), in that it includes the matrix Γi that

makes it optimal in the class of all estimating equations based on (Yi − µi).

Under the usual regularity conditions for M -estimators (Huber, 1981) the

estimator defined as the solution of (3) is asymptotically normally distributed

with asymptotic variance M−1QM−1, where

M = lim
K→∞

1

K

K∑

i=1

DT
i ΓT

i V
−1
i ΓiDi

and

Q = lim
K→∞

1

K

K∑

i=1

DT
i ΓT

i V
−1
i V ar(Ψi)V

−1
i ΓiDi.

For such longitudinal marginal models and writing ψ(εit) = w(εit) · εit,

GCp from (2) becomes:

GCp = WSR−

K∑

i=1

ni∑

t=1

E{ψ2(εit)} + t1 − t2, (4)

where

t1 u
2

σK

K∑

i=1

Tr{M−1E(DT
i Zia

T
i A

−1
i Di)}, (5)

with Zi = ΓT
i V

−1
i (Ψi − ci), ai = (ai1 . . . aini

)T and ait = ψ(εit)ψ
′(εit), and

t2 u
1

σ2K2

K∑

i=1

Tr
[
E
{
BiA

−1
i DiM

−1
( K∑

j=1

DjZjZ
T
j Dj

)
M−1DT

i A
−1
i

}]
, (6)
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with Bi = diag(bi1 . . . bini
) and bit = ψ(εit)ψ

′′(εit) − ψ2(εit)/ε
2
it + (ψ′(εit))

2.

Computations are provided in Appendix B. Notice that the weighting scheme

included in the GCp definition ignores the within subject correlation. How-

ever, the technique we use is designed for situations where this correlation

is fairly weak; see Cantoni (2004). Notice also that the expectations in (5)

and (6) can be easily evaluated by Monte Carlo. Essentially one generates

nsim block correlated outcomes Y = (Y1, . . . , YK) following the algorithm

described in Emrich and Piedmonte (1991) and then uses these to compute

empirical expectations as approximations to those expectations appearing in

t1 and t2 above. Note that one uses the current estimates β̂p and α̂. We took

nsim = 100 and found the approximations worked quite well.

If the weights in (2) are chosen to be identically one, we obtain

GCp =
K∑

i=1

ni∑

t=1

r2
it −

K∑

i=1

ni + 2
K∑

i=1

ni∑

t=1

E(εitδit), (7)

where we have used the fact that E(ε2it) = 1, and where we notice that the

term t2 is exactly zero in this case. Moreover, following the same reasoning

leading to (5), we obtain in this case

GCp =
K∑

i=1

ni∑

t=1

r2
it −

K∑

i=1

ni +
2

σ2K

K∑

i=1

Tr(M−1DT
i A

−2
i Di), (8)

which can be computed directly without simulation. Hereafter, we refer to

(8) as our classical GCp, and to (4)-(6) as our weighted or robust GCp.

3. SIMULATION STUDY

We have considered a simulation study that encompasses two designs, two

sample sizes and ten techniques. Each combination has been tested on both

noncontaminated and contaminated data.
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For i = 1, . . . , K (K = 15 and K = 30) independent subjects and t =

1, . . . , ni = 10, we consider a marginal longitudinal model (see Section 2.2)

with logistic link, where the linear predictor is β0 + xT
itβ, with xit and β of

dimension 5. The response Yit is binary (0 or 1).

Design I: The explanatory variables xT
it = (D1, D2, C1, C2, C3) are: a

dummy variable D1, e.g. sex, coded 0 or 1 with probability of each equal to

0.5, a three level variableD2 with probabilities 0.35, 0.15 and 0.5 respectively,

and 3 continuous variables C1, C2, and C3 generated independently according

to standard normal distributions. The true values of the parameters are

β0 = 0.5 and β = (1, 0, 0.5, 0.5, 0), meaning that the true model generating

the data is defined by the intercept, D1, C1, and C2. The correlation within

subjects is exchangeable: for each i, Corr(Yit, Yit′) = α = 0.1, for t 6= t′.

Design II: Here we replace C3 above with the interaction variable I1 =

D1 ∗ C1 and β = (1, 0, 0.5, 0, 0.5), which defines the generating model as

D1, C1, and I1 plus intercept. All other aspects remain the same as in De-

sign I.

In both designs the full model contains all available variables.

We simulated 100 replications of block-correlated binary responses. This

sample represents our noncontaminated data. To obtain a slightly contam-

inated dataset we flipped (from 0 to 1, or vice-versa) 5% randomly chosen

responses from each replication contained in the noncontaminated data. This

contamination is reflective of what may occur in practice, when in a few cases

a zero might be recorded as a one or vice versa. In addition, it is compati-

ble with the fact that we consider observation downweighting, as opposed to

cluster downweighting.

For the classical approach, we estimated the parameters according to (3)

with Wi = I (and therefore Γi = I and ci = 0), which reproduces the
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Liang and Zeger (1986) equations, and investigate five variable selection pro-

cedures: 1) GCp: identify the model with smallest GCp as defined by (7);

2) z-test: fit the full model and retain all the variables for which the Wald

test gives a p-value lower than 0.05; 3) z-stepwise: backward stepwise se-

lection procedure based on Wald test with cutoff on the p-value set at 0.1;

4) score-test: fit the full model and retain all the variables for which the

score-type test as per formulae (3)-(5) of Heritier and Ronchetti (1994) with

ψ(zi, Tn) = DT
i V

−1
i (Yi − µi) gives a p-value lower than 0.05; and 5) score-

stepwise: backward stepwise selection procedure based on score-type test

with cutoff on the p-value set at 0.1. For the robust approach, the regression

parameters are estimated according to (3) where Wi = diag(wi1, . . . , wini
),

with wit = c/|εit| if εit > c and wit = 1 otherwise (c=1.5). The exchangeable

correlation parameter α is estimated by a generalized version of the method

of moments, as defined in Cantoni (2004) (k = 2.4). Five robust variable

selection counterparts of the classical techniques are used: our robust GCp

as defined by (4) with ψ = ψc(r) = rmin(1, c/|r|) being the Huber’s function

(c = 1.5); a robust z-test and a robust stepwise procedure, both based on

a Wald-type test of the form β̂2
rob/V̂ ar(β̂rob); a robust score-type test and a

robust stepwise procedure, both based on a score-type test as per formulae

(3)-(5) of Heritier and Ronchetti (1994) with ψ(zi, Tn) = DT
i ΓT

i V
−1
i (Ψi− ci).

Note that all the test statistics used (classical and robust) are distributed as

χ2
1 under the null hypothesis, see Heritier and Ronchetti (1994).

As pointed out by a referee, although the classical procedures 2) and

4) are often used, they are a “bad habit” and can be unreliable, because,

among other things, the choice of working dependence model can impact

point estimates and significance levels. Moreover, Wald’s tests in logistic

regression for independent observations are known to behave in an aberrant
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manner (Hauck and Donner, 1977). We can expect to observe a similar

behavior for dependent data.

[Table 1 about here.]

[Table 2 about here.]

The results of the simulation study are displayed in Table 1 for Design I

and in Table 2 for Design II, where we report the percentage of selected

models that match the true generating model (true), that contain additional

variables (extra), that miss variable(s) used to generate the model (missing)

and finally, that do not fall into one of these categories (others). According

to the definition in Shao (1993), p. 487, a selected model is considered good if

it contains the true model generating the data. On the other hand, incorrect

models are those where at least one variable used to generate the data is

missing. We therefore also report a summary of the good models.

Let us first comment on the results of Table 1 and Table 2 with refer-

ence to the number of good models. We see that, based on this measure, in

all situations GCp is the technique performing best, with the two stepwise

procedures sometimes comparable (when K is large and data are not con-

taminated), the z-test never performing as well and the score-test even worse.

This should not come as much of a surprise since GCp is a technique allowing

us to compare all possible models. Moreover, both z-test and score-test (as

well as the two corresponding stepwise procedures to an extent) suffer from

the fact that the estimated coefficients of a fitted model are not independent

(even when the x’s are independent).

¿From the robustness point of view, we see that, when faced with contam-

inated data the classical GCp appears robust by design (at least for Design I),
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whereas the “success rate” of all the other procedures drops considerably, il-

lustrating that all of these variable selection procedures are more affected

by outlying observations than GCp. The results further indicate that even

though classical GCp is robust by design, its performance on contaminated

data can be improved by using its robust version. On the other hand, the

robust versions of z-test, score-test and the two stepwise procedures cannot

handle contaminated data any better than their classical counterparts.

The results for Design II show a similar pattern to those of Design I, with

the major differences being that the “success rates” are lower (due to the

more difficult task of dealing with interaction effects), and the superiority of

GCp even more evident.

Performances (not surprisingly) drop for smaller sample sizes (smaller

K), with score-test and z-test and the two stepwise procedures being much

more heavily affected. This is likely a consequence of the fact that all of these

techniques rely on asymptotic results. GCp, on the other hand, does not rely

on asymptotics, but rather on a Taylor series expansion which apparently

has a less detrimental effect. Notice also that if we consider good models,

GCp tends to be more liberal in the sense that it chooses more extra models.

It is interesting to take a closer look at the distribution of the classical

and robust GCp statistics for good models in the contaminated setting, for

Design I and K = 30 for example. We identify the models with a five-letter

sequence of T (=True) and F (=False), according to the inclusion of the

corresponding parameters. For instance, the model that generated the data

is TFTTF. Then, among the 25(= 32) possible models there are 3 other good

models, namely TFTTT, TTTTF and TTTTT.

[Figure 1 about here.]
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Figure 1 shows a boxplot of the values of classical and robust GCp for

these 4 models. It appears clearly that not only are the values of the robust

GCp in median smaller than those of its classical counterpart but also that

their variability is lower. This confirms that the robust technique is more

stable than its classical counterpart and should be preferred in the presence

of misspecification of the model.

4. APPLICATION ON REAL DATA

Many healthcare professionals are trained in direct laryngoscopic endotra-

cheal intubation (LEI), a potentially life saving procedure. We examine data

from a prospective longitudinal study on LEI at Dalhousie University, pre-

viously analyzed in Mills, Field and Dupuis (2002). Variable selection is

an important step as the model(s) chosen will include only those covariates

significant in predicting successful completion of LEI.

A total of 438 LEI were analyzed. We let Yij = 1 if trainee i performs a

complete LEI in less than 30 seconds on trial j, and 0 otherwise. The correla-

tion between observations on the same trainee was taken to be exchangeable,

consistent with the findings of the original analysis (Mills et al., 2002). We

judge trainees based on the following 9 covariates (our full model): whether

the head and neck were in optimal position (NECKFLEX and EXTOA);

whether they inserted the scope properly (PROPLGSP); whether they per-

formed the lift successfully (PROPLIFT); whether there was appropriate

request for help (ASKAS); whether there was unsolicited intervention by the

attending anesthesiologist (HELP); the number of complications (COMPS)

and the trainee’s handedness (TRHAND) and sex (TRGEND). All covariates

are binary with the exception of COMPS which is ordinal. 19 trainees per-

formed anywhere from 18 to 33 trials. A categorical covariate TRIALCAT
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was also defined: 1 for trials 1-5, 2 for trials 6 through 10, and so forth.

Our classical GCp procedure selects the model containing covariates TRI-

ALCAT, PROPLGSP, PROPLIFT, ASKAS, HELP and COMPS whereas

both the classical tests and stepwise approaches select a subset of these par-

ticular covariates. Such behavior is consistent with that observed in our

simulation results where we saw the tests and stepwise approaches favoring

(often incorrectly) smaller models. The robust procedures are quite insight-

ful. Robust GCp as defined by (4) with ψ = ψc(r) = rmin(1, c/|r|) being the

Huber’s function (c = 1.5), selects the model that includes two extra covari-

ates (NECKFLEX and EXTOA) when compared to the model selected by

the classical GCp procedure. Robust tests and robust stepwises again select a

subset of these particular covariates: the z and score stepwise approaches ex-

clude EXTOA, the robust z-test excludes both EXTOA and COMPS, while

the robust score test excludes in addition NECKFLEX and ASKAS, yielding

in fact the same model as the classical score stepwise.

To summarize, each robust technique selects a larger (or equal) model

than its classical counterpart. In addition, of the five techniques, GCp tends

to select larger models. Moreover, it is for small values of K (here K = 19)

that we see the major benefits in using the robust version of GCp; cf. Table 1,

K = 15, contaminated data.

[Figure 2 about here.]

Our robust GCp is designed to automatically downweight outlying data

thereby reducing their influence on model selection. Figure 2 shows the

weights associated with each observation in theGCp formula (4) for the model

selected by the robust GCp procedure. These weights allow one to identify

the outlying observations. There are 9 observations (corresponding to 2%,
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identified in Figure 2) that were heavily downweighted by the procedure

(weight less than 0.4).

The disagreement between results obtained using robust and classical

GCp suggest that the outlying data have a significant impact on the model

chosen. For this reason the model selected by the robust GCp procedure is

to be preferred in this case.

5. CONCLUSIONS

Model selection is an important part of any statistical analysis. In requiring

only observations and a model from which predicted values can be obtained,

GCp can be applied to a wide range of statistical problems. Its design also

makes it a welcome addition to areas where model selection procedures are

mainly based on Wald-type tests, score-type tests or stepwise procedures all

of which must be used with caution.

In choosing to focus on longitudinal marginal modeling, much has been

learned about the performance of the z-test, score-test and corresponding

stepwise procedures, and important comparisons drawn with that of GCp.

GCp performs as well as the stepwise procedures and much better than both

the z-test and score-test, in identifying good models. GCp goes on to exceed

all approaches when faced with contamination as often occurs in practice.

Work in progress includes the application of GCp to nonparametric tech-

niques (such as GAM) and nonparametric extensions to longitudinal data.
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Appendix

A. Derivation of the correction term in the formula for GCp

We derive the correction term −
∑k

i=1E{w
2
i (ri)ε

2
i } + 2

∑K
i=1E{w

2
i (ri)εiδi}.

Consider first the Taylor expansion of the weights wi(ri) around wi(εi):

wi(ri) = wi(εi) + (ri − εi)w
′(εi) +

1

2
(ri − εi)

2w′′(εi) +
1

6
(ri − εi)

3w′′′(ε∗i )
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for some ε∗i lying between ri and εi. It is assumed that the weight function

wi is even and three times differentiable. The above expansion leads us to

an approximate expression for w2
i (ri) from which we obtain equation (2).

B. Derivation and computation of t1 and t2

In the setting of Section 2.2, (2) becomes

GCp =
K∑

i=1

ni∑

t=1

w2
it(rit)r

2
it −

K∑

i=1

ni∑

t=1

E{w2
it(εit)ε

2
it}

+ 2
K∑

i=1

ni∑

t=1

E{
(
wit(εit)w

′

it(εit)ε
2
it + w2

it(εit)εit
)
δit} (9)

−

K∑

i=1

ni∑

t=1

E[
{
wit(εit)w

′′

it(εit)ε
2
it + {w′

it(εit)}
2ε2it + 4wit(εit)w

′

it(εit)εit
}
δ2
it]

where rit = (yit − ŷit)/(σv
1/2
it ), εit = (yit − Eyit)/(σv

1/2
it ) and δit = (ŷit −

Eyit)/(σv
1/2
it ). Notice that Eyit and σ2vit are the expected value and variance

under the full model. By defining ψ(εit) = w(εit) · εit, we can rewrite (9) as

GCp =
K∑

i=1

ni∑

t=1

w2
it(rit)r

2
it −

K∑

i=1

ni∑

t=1

E{ψ2(εit)} + t1 − t2,

where

t1 = 2
K∑

i=1

ni∑

t=1

E{ψ(εit)ψ
′(εit)δit} (10)

and

t2 =
K∑

i=1

ni∑

t=1

E
[{
ψ(εit)ψ

′′(εit) −
ψ2(εit)

ε2it
+ (ψ′(εit))

2
}
δ2
it

]
. (11)

At this point we use the structure of the marginal model form in order to

compute the expectations in (10) and (11). Let δit = (ŷit − Eyit)/(σv
1/2
it ) =

{g−1(xT
itβ̂) − g−1(xT

itβ)}/(σv
1/2
it ). A Taylor expansion of g−1(xT

itβ̂) about

g−1(xT
itβ) results in the following approximation: δit u

1

σv
1/2

it

∂g−1(θ)
∂θ

∣∣∣
θ=xT

itβ
xT

it(β̂−
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β). The influence function (Hampel, 1974, Hampel et al., 1986) of the esti-

mator defined by (3) is given by IF{(X, y); β̂, Fβ} = M−1DT ΓTV −1(Ψ − c)

for a generic observation (X, y). We therefore have for K → ∞:

β̂ − β u
1

K

K∑

j=1

IF{(Xj, yj); β̂, Fβ} =
1

K

K∑

j=1

M−1DT
j ΓT

j V
−1
j (Ψj − cj),

which implies

δi =
1

σ
A−1

i DiM
−1 1

K

K∑

j=1

DT
j ΓT

j V
−1
j (Ψj − cj) (12)

for δi = (δi1 . . . δini
)T . We can now express t1 of equation (10) as t1 u

2
∑K

i=1E{Tr(δia
T
i )}. Substituting our expression for δi from equation (12)

into the above and recognizing that all (j 6= i) terms are 0 by independence,

we obtain the following expression for t1:

t1 u
2

σK

K∑

i=1

E(Tr[A−1
i DiM

−1DT
i ΓT

i V
−1
i {Wi(yi − µi) − ci}a

T
i ]),

and by using the properties of expectation and trace

t1 u
2

σK

K∑

i=1

Tr{M−1E(DT
i Zia

T
i A

−1
i Di)}, (13)

where Zi = ΓT
i V

−1
i {Wi(yi−µi)−ci} ai = (ai1 . . . aini

)T and ait = ψ(εit)ψ
′(εit).

Using the same arguments we can express t2 in equation (11) as t2 u

∑K
i=1E{Tr(Biδiδ

T
i )}, where Bi = diag(bi1 . . . bini

) and bit is defined in Sec-

tion 2.2. Substituting our expression for δi from equation (12) into that above

and removing those terms whose expectation is zero (by independence), we

obtain the following expression for t2:

t2 ≈
1

σ2K2

K∑

i=1

Tr
[
E
{
BiA

−1
i DiM

−1
( K∑

j=1

DjZjZ
T
j Dj

)
M−1DT

i A
−1
i

}]
. (14)
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Figure 1. Distribution of GCp for the good models.
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Figure 2. Observation weights in (4) for the model selected by robust GCp.
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Table 1

Simulations results for design I. Percentage of models in each category.

non contaminated

model classical robust

GCp z z-step. score sc.-step. GCp z z-step. score sc.-step.

K = 30 good 90 75 87 73 88 89 75 84 69 84

K = 30 extra 29 14 22 10 22 56 11 22 8 21

K = 30 true 61 61 65 63 66 33 64 62 61 63

K = 30 missing 4 22 9 24 9 2 18 10 28 11

K = 30 others 6 3 4 3 3 9 7 6 3 5

K = 15 good 62 29 48 15 33 61 30 43 10 32

K = 15 extra 27 7 11 0 9 42 6 10 0 3

K = 15 true 35 22 37 15 24 19 24 33 10 29

K = 15 missing 23 55 36 74 51 11 50 38 66 46

K = 15 others 15 16 16 11 16 28 20 19 24 22

contaminated

model classical robust

GCp z z-step. score sc.-step. GCp z z-step. score sc.-step.

K = 30 good 82 60 73 54 67 91 63 72 56 69

K = 30 extra 29 8 19 5 13 67 8 16 6 11

K = 30 true 53 52 54 49 54 24 55 56 50 58

K = 30 missing 13 34 20 40 24 2 33 22 38 22

K = 30 others 5 6 7 6 9 7 4 6 6 9

K = 15 good 42 17 28 6 19 63 14 25 5 16

K = 15 extra 21 5 7 1 4 48 4 10 0 3

K = 15 true 21 12 21 5 15 15 10 15 5 13

K = 15 missing 32 56 46 61 60 8 57 44 59 58

K = 15 others 26 27 26 33 21 29 29 31 36 26
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Table 2

Simulations results for design II. Percentage of models in each category.

non contaminated

model classical robust

GCp z z-step. score sc.-step. GCp z z-step. score sc.-step.

K = 30 good 42 13 29 5 11 75 18 31 5 12

K = 30 extra 18 2 9 1 5 54 3 12 1 6

K = 30 true 24 11 20 4 6 21 15 19 4 6

K = 30 missing 33 69 52 59 48 5 64 49 56 48

K = 30 others 25 18 19 36 41 20 18 20 39 40

K = 15 good 21 8 15 1 7 43 3 9 1 3

K = 15 extra 5 2 4 1 2 30 2 6 0 2

K = 15 true 16 6 11 0 5 13 1 3 1 1

K = 15 missing 38 64 58 41 43 8 62 67 36 55

K = 15 others 41 28 27 55 50 49 35 24 63 42

contaminated

model classical robust

GCp z z-step. score sc.-step. GCp z z-step. score sc.-step.

K = 30 good 22 9 17 3 10 67 14 21 4 8

K = 30 extra 5 2 5 0 2 53 2 6 1 2

K = 30 true 17 7 12 3 8 14 12 15 3 6

K = 30 missing 45 71 56 65 52 7 64 58 63 55

K = 30 others 33 20 27 32 38 26 22 21 33 37

K = 15 good 7 5 8 0 3 31 3 5 0 3

K = 15 extra 4 2 5 0 1 22 2 4 0 2

K = 15 true 3 3 3 0 2 9 1 1 0 1

K = 15 missing 55 58 73 32 49 18 56 72 28 53

K = 15 others 38 37 19 68 48 51 41 23 72 44
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